
On Testing Marginal versus Conditional

Independence

Richard Guo

ricguo@uw.edu

Nov, 2019

Department of Statistics, University of Washington, Seattle

1



Introduction



Motivation

Inferring causal structures usually involves model selection among

directed acyclic graphs (DAGs).

While learning undirected graphical models has been relatively

well-developed (e.g., graphical lasso, neighborhood selection),

model selection for DAGs is less well-understood.

This poses a challenge to maintaining error guarantee in causal

inference, even in large samples. In this talk, I will analyze the

simplest example where such a challenge arises.
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Marginal vs. conditional independence

Consider (X1,X2,X3)ᵀ ∼ N (0,Σ) on R3.

Covariance Σ ∈ S3, the set of 3× 3 real positive definite matrices.

We want to test between

M0 : X1 ⊥⊥ X2, (X1 → X3 ← X2),

M1 : X1 ⊥⊥ X2 | X3, (X1 − X3 − X2),

assuming that at least one of them is true.

X1 − X3 − X2 includes the following Markov-equivalent DAGs

X1 ← X3 ← X2, X1 → X3 → X2, X1 ← X3 → X2.
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Marginal vs. conditional independence

Testing between

M0 : X1 ⊥⊥ X2 vs. M1 : X1 ⊥⊥ X2 | X3

is a non-nested model selection problem.

They correspond to equality/algebraic constraints on Σ = {σij}:

M0 : σ12 = 0,

M1 : σ12·3 = σ12 − σ13σ
−1
33 σ23 = 0 ⇔ σ12σ33 = σ13σ23.

M0 and M1 intersect at the two axes

M0 ∩M1 = {σ12 = σ13 = 0} ∪ {σ12 = σ23 = 0}.
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Geometry

We visualize the parameter space in the correlation space.

M0 : ρ12 = 0, M1 : ρ12 = ρ13ρ23
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Singularity

The two axes further intersect at the origin

Msing : {σ12 = σ13 = σ23 = 0},

which is a singularity. Msing corresponds to diagonal Σ.

• M0 ∩M1 vs. S3: Likelihood-ratio test (LRT) was studied by
Drton (2006, 2009) and Drton and Sullivant (2007).

• LRT has a non-standard asymptotic distribution at Msing.

• M0 vs. M1: At Msing, the tangent cones of the two models
coincide.

• They are called “1-equivalent” by Evans (2018), meaning that

linear approximations to the parameter space are the same.

• In the Euclidean m−1/2-ball of Msing, m2 samples are required

to distinguish M0 and M1.
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Difficulty

Model selection for DAGs is usually conducted by the following

approaches (Drton and Maathuis, 2017).

• Score-based: Picking the model with the highest penalized

likelihood score (e.g., AIC, BIC).

Since dim(M0) = dim(M1), both AIC and BIC will pick the

model with the higher likelihood.

• Constraint-based: Testing

M0 : X1 ⊥⊥ X2 vs. M1 : X1 ⊥⊥ X2 | X3.

This is adopted by the PC algorithm. For Gaussian data,

Fisher’s z-transformation of partial correlation is used as the

test statistic.
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Difficulty

Simulated with n = 1, 000, ρ = 0.3 and unit variances under level

α = 0.05.
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Method



Likelihood ratio test for nested models

Consider a parametric family {Pθ : θ ∈ Θ}, where Θ is an open

subset of Rd . For Θ0 ⊆ Θ, suppose we want to test

H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ.

Under regularity, the likelihood ratio test (LRT) statistic

λn = 2

(
sup
θ
`n(θ)− sup

θ0

`n(θ)

)
d⇒ χ2

c ,

where c = d − dim(Θ0). `n(·) is the log-likelihood under sample

size n.

For example, in linear regression y ∼ β0 + β1X1 + β2X2 + β3X3.

We use χ2
2 for testing

H0 : β0 = β1 = 0 vs. H1 : β ∈ R4.
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Likelihood ratio test

Similarly, we define the log-likelihood ratio of M0 versus M1 as

λ
(0:1)
n :=2

(
sup

Σ∈M0

`n(Σ)− sup
Σ∈M1

`n(Σ)

)
=2
(
`n(Σ̂

(0)
n )− `n(Σ̂

(1)
n )
)
,

where Σ̂
(0)
n , Σ̂

(1)
n are MLEs within M0 and M1 respectively.

`n(·) is the Gaussian log-likelihood function

`n(Σ) =
n

2
(− log |Σ| − Tr(SnΣ−1)).
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Likelihood ratio test

The Gaussian MLEs for DAGs take a closed form (Drton and

Richardson, 2008), which yields the following expression for the

LRT.

λ
(0:1)
n = n log

((
s2

13 − s11s33

) (
s2

23 − s22s33

)
s33

)
−

n log

(
s11s22

(
s22s

2
13 − 2s12s23s13 + s11s

2
23

s2
12 − s11s22

+ s33

))
,

where S is the sample covariance taken with respect to mean zero.
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Our plan

1. An information-theoretic analysis on how well the two models

can be distinguished (by any means).

2. Look at the regimes of “effect size” ∼ n, such that the
optimal error is between 0 and 1.

• a stable, non-degenerate asymptotic distribution of LRT.

• We will be doing large-n-small-effect asymptotics!

3. Derive the asymptotic distributions.

• Are they uniform?

4. Develop a model selection procedure with error guarantees.
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Optimal error

We study the minimax rate of distinguishing two sequences of

distributions, one within M0 and the other within M1, as they

approach M0 ∩M1.

Lemma: testing two simple hypotheses

For testing H0 : X ∼ P versus H1 : X ∼ Q, the minimum sum of

type-I and type-II errors is 1− dTV(P,Q).

Total variation distance

dTV(P,Q) = sup
A
|P(A)− Q(A)| =

1

2

∫
|p − q| dµ.
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Optimal error

Consider a sequence

Pn = P
Σ

(0)
n
, Σ

(0)
n ∈M0 \M1, Σ

(0)
n → Σ∗ ∈M0 ∩M1.

Correspondingly, let Qn = P
Σ

(1)
n

from M1 \M0 such that

Σ
(1)
n = arg min

Σ∈M1\M0

DKL(P
Σ

(0)
n
‖PΣ),

which is the most difficult to distinguish from.

With Pn = P
Σ

(0)
n

and Qn = P
Σ

(1)
n

, let us compute the total

variation between the product measures (n iid samples).

The limiting optimal error can be sandwiched by the Hellinger

distance H(P,Q) :=
{

1
2

∫
(
√
p −√q)2 dµ

}1/2
.

H2(Pn
n ,Q

n
n ) ≤ dTV(Pn

n ,Q
n
n ) ≤ H(Pn

n ,Q
n
n )
√

2− H2(Pn
n ,Q

n
n ).
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Optimal error

With some algebra, we have

1− dTV(Pn
n ,Q

n
n )→

0, H(Pn,Qn) = ω(n−1/2)

1, H(Pn,Qn) = o(n−1/2)
,

and when H(Pn,Qn) � n−1/2,

0 < lim inf
n
{1− dTV(Pn

n ,Q
n
n )} ≤ lim sup

n
{1− dTV(Pn

n ,Q
n
n )} < 1.

Effect size

H(Pn,Qn) � ρ13,nρ23,n,

where ρij = σij/
√
σiiσjj is the correlation coefficient.
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Optimal error

Comparing H(Pn,Qn) to n−1/2, to stabilize the asymptotic error,

there are two regimes.

Two regimes

{1− dTV(Pn
n ,Q

n
n )} → c ∈ (0, 1)

iff


ρ13,n � γn−1/2, ρ23,n → ρ23 6= 0

ρ23,n � γn−1/2, ρ13,n → ρ13 6= 0

ρ13,nρ23,n � δn−1/2, ρ13,n, ρ23,n → 0.

}
“weak-strong”

“weak-weak”
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Asymptotics: weak-strong regime

We study the (local) asymptotic distribution of λ
(0:1)
n .

For r = γ
√
σ11σ33, we set

Σ
(0)
n =

 σ11 0 r/
√
n

0 σ22 σ23

r/
√
n σ23 σ33

 ,

Σ
(1)
n =

 σ11 (r/
√
n)σ23/σ33 r/

√
n

(r/
√
n)σ23/σ33 σ22 σ23

r/
√
n σ23 σ33

 ,

Σ
(0)
n ,Σ

(1)
n → Σ∗ =

σ11 0 0

0 σ22 σ23

0 σ23 σ33
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Asymptotics: weak-strong regime
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Asymptotics: weak-strong regime

Let Z1,Z2 be two independent standard normals.

LRT in the weak-strong regime

Under Σ
(0)
n ,

λ
(0:1)
n

d⇒ ρ

(Z1 +
γ√

2(1− ρ)

)2

−

(
Z2 +

γ√
2(1 + ρ)

)2
 ;

Under Σ
(1)
n ,

λ
(0:1)
n

d⇒ ρ

(Z1 + γ

√
1− ρ

2

)2

−

(
Z2 + γ

√
1 + ρ

2

)2
 .
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Asymptotics: weak-strong regime
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The asymptotic distribution is a scaled difference between two

independent non-central χ2
1 variables.

• No simple analytic form for PDF/CDF.

• Adding an n−1/2 shift to other elements in Σn does not

change the distribution (regularity).

• Can be derived from local asymptotic normality (LAN) or Le

Cam’s 3rd Lemma (change of measure under contiguity).
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Asymptotics: weak-weak regime
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Asymptotics: weak-weak regime

Under the weak-weak regime ρ13,nρ23,n = δn−1/2, e.g.,

ρ13,n =
√
δn−1/3 and ρ23,n =

√
δn−1/6, the usual tactics fail due to

irregularity: (i) M0 and M1 cannot be embedded into the same

LAN family; (ii) contiguity to an iid static law no longer holds.

Pn
n ,Q

n
n contiguous to each other, but neither contiguous to Pn

Σ∗ .

M1

M0
O

√
δ

δ

Figure 1: M0 and M1 are
√
δ away from origin; but they are δ away

from each other (Evans, 2018). 22



Asymptotics: weak-weak regime

Thanks to the closed form of λ
(0:1)
n , by a manual “change of

measure” (relating the distribution of sample covariance under Σ
(i)
n

to that under Σ = I ), we obtain a Gaussian limit.

LRT in the weak-weak regime

For ρ13,nρ23,n = δn−1/2 + o(n−1/2),

λ
(0:1)
n

d⇒

δ(2Z + δ) =d N (δ2, (2δ)2), under Σ
(0)
n

δ(2Z − δ) =d N (−δ2, (2δ)2), under Σ
(1)
n

.

The limit only depends on δ. It does not depend on how ρ13,n and

ρ23,n approach zero individually.
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Limit experiments

Asymptotically, testing between M0 and M1 is equivalent to

testing the location of a normal between two lines, from a

single Gaussian observation.

It is characterized by an angle and an intercept.

M0

M1

θ = arcsin ρ

γ/
√

1− ρ2 M1

M0

θ = arcsin ρ

γ

M0 M1

δ

M0 M1

δ
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Decision, error and power

Due to non-nestedness, we refrain from choosing either as the

“null”. Instead, we consider a three-way decision rule

φn : Σn → {M0, M1, M0 ∪M1}.

Size

For all Σn → Σ∗ on Mi \M1−i for i = 0, 1, control

lim sup
n→∞

PΣn(φn =M1−i ) ≤ α.

The limit Σ∗ could be in M0 ∩M1 or Mi \M1−i .

Power

Under Σn → Σ∗ from Mi \M1−i , power is defined as

lim inf
n→∞

PΣn(φn =Mi ).
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Decision boundaries from asymptotics

Given the (1) regime, (2) ρ and (3) the local parameter (γ or δ), a

three-way decision can be constructed from asymptotic quantiles.
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Non-uniform asymptotics :(

But this is impossible.

• Depends on the regime (“where”): weak-strong or
weak-weak.

• Discontinuity across regimes: the law under weak-strong does

not converge to that of weak-weak when ρ→ 0.

• Depends on the local parameter γ or δ (“how”).

• Local parameter has scale n−1/2, not point-identified.

• Impossible to judge if an edge is weak based on whether its

confidence interval contains zero without further assumptions.

• Further, a procedure that tries to first estimate “where” and

“how” before applying the decision rule is susceptible to

irregularity issues.
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Envelope!
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Extremal quantile

Let us look at the weak-weak Gaussian asymptotic as an example.

F−1
0 (α) = (δ + Φ−1(α))2 − Φ−1(α)2.

-5 0 5
x

δ=0. 50
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Extremal quantile

Let us look at the weak-weak Gaussian asymptotic as an example.

F−1
0 (α) = (δ + Φ−1(α))2 − Φ−1(α)2.
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Extremal quantile

Let us look at the weak-weak Gaussian asymptotic as an example.

F−1
0 (α) = (δ + Φ−1(α))2 − Φ−1(α)2.
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Extremal quantile

Let us look at the weak-weak Gaussian asymptotic as an example.

F−1
0 (α) = (δ + Φ−1(α))2 − Φ−1(α)2.
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Extremal quantile

Let us look at the weak-weak Gaussian asymptotic as an example.

F−1
0 (α) = (δ + Φ−1(α))2 − Φ−1(α)2.
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Envelope distribution

Taking extremal quantiles for every α is equivalent to taking

pointwise supremum of CDF over the local parameter γ or δ.

Envelope distribution

Given a family of distribution functions {Fh : h ∈ H} on R, define

F̄ ∗(x) := sup
h∈H

Fh(x),

and

F̄ (x) :=

F̄ ∗(x), F̄ ∗ is continuous at x

limy→x+ F̄ ∗(y), F̄ ∗ is discontinuous at x
.

We call F̄ the envelope distribution of {Fh : h ∈ H} if F̄ is a

valid distribution function.
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Envelope distribution

Envelope distribution function

Lemma: If F̄ ∗(x)→ 0 as x → −∞, then F̄ (x) is a valid

distribution function.

For the weak-weak regime, it can be shown F̄ = 1
2 (−χ2

1) + 1
2δ0.
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Envelope distribution

The same phenomenon occurs for the weak-strong regime!

We can verify that F̄ ∗ρ (x)→ 0 as x → −∞ for every |ρ| ∈ (0, 1].

Therefore, F̄ρ, the envelope of {Fρ,γ : γ ∈ R}, is a valid

distribution function.
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Envelope distribution

Continuity of envelope!

Proposition: F̄ρ
d⇒ F̄ as ρ→ 0, where F̄ is the envelope

distribution for the weak-weak regime.

Further, we show the following properties for {Fρ : −1 ≤ ρ ≤ 1}.

• F̄ρ = F̄|ρ|.

• F̄ρ under M0 \M1 and M1 \M0 have the same form.

• The positive part of F̄ρ for |ρ| ∈ (0, 1] is distributed as the

positive part of ρ(Z 2
1 − Z 2

2 ) for two independent standard

normals.

• Only the negative part of F̄ρ is relevant for decision making.

• We do not have an analytic form for the negative part of F̄ρ,

except for ρ ∈ {−1, 0, 1}.
33



Envelope quantiles

Quantiles of F̄ρ can be evaluated by Monte Carlo on a grid of

values for ρ and interpolating.

It is interesting to notice that F̄−1
ρ (α) is not monotonic in |ρ|.
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Model selection procedure: adaptive rule

Note that F̄ρ is continuous in ρ. Recall that ρ = ρstrong in the

weak-strong regime, and ρ = 0 in the weak-weak regime. |ρ| can

be consistently estimated by

ρ̂n = |ρ̂13,n| ∨ |ρ̂23,n|.

Adaptive rule

φada
n :=


M0, λ

(0:1)
n > −F̄−1

ρ̂n
(α)

M1, λ
(0:1)
n < F̄−1

ρ̂n
(α)

M0 ∪M1, otherwise

.
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Envelope of envelopes

The negative parts of {F̄ρ : ρ ∈ [−1, 1]} are dominated by that of

F̄ρ=1.
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Envelope of envelopes

Bessel envelope

F̄ρ=1 is distributed as the difference between two independent χ2
1

variables.

It has density involving modified Bessel function of the 2nd kind

pB(u) =
1

2π
K0(|u|/2).
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Model selection procedure: uniform rule

Uniform rule

φunif
n :=


M0, λ

(0:1)
n > −F̄−1

ρ=1(α)

M1, λ
(0:1)
n < F̄−1

ρ=1(α)

M0 ∪M1, otherwise

.

The quantile is 3.19 for α = 0.05 and 5.97 for α = 0.01.
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Error guarantee

Error guarantee (rate-free)

Theorem: The adaptive rule φada
n controls asymptotic error

uniformly below α for 0 < α < 1/2.

• This holds for the local model sequences ρ13,nρ23,n � n−1/2 such

that the asymptotic error is between 0 and 1.

• This also holds for ρ13,nρ23,n = o(n−1/2) since λ
(0:1)
n →p 0 and

Pr(φn =M0 ∪M1)→ 1.

• And also holds for ρ13,nρ23,n = ω(n−1/2) where λ
(0:1)
n goes to ±∞.

Hence, our guarantee holds under Pn
Σn

for any converging

sequence Σn. An assumption on the rate of signal strength is not

required.

Corollary: φunif
n has the same guarantee.
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p-value

When it is desired to report a p-value, the rules can be restated as

φn =


M0, λ

(0:1)
n > 0 and p-value < α

M1, λ
(0:1)
n < 0 and p-value < α

M0 ∪M1, otherwise

,

where a potentially conservative p-value is defined as

p-value := F̄ρ(−|λ(0:1)
n |)

for ρ = 1 (uniform) or ρ = ρ̂n (adaptive).
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Numerical results



Methods for comparison

Naive Simply choosing the model with highest likelihood/AIC/BIC

φnaive
n :=

M0, λ
(0:1)
n > 0

M1, λ
(0:1)
n < 0

.

Interval selection This is based on Drton and Perlman (2004).

Construct (marginally) (1− α)-level confidence intervals for ρ12

and ρ12·3, and let

φinterval
n :=


M0, only C.I. for ρ12 contains 0

M1, only C.I. for ρ12·3 contains 0

M0 ∪M1, both C.I.’s contain 0

.

φinterval
n guarantees asymptotic size below α (suppose M0 is true,

then one only makes an error when the C.I. for ρ12 does not

contain zero). 41



Weak-strong regime: size under M0 and M1

Models are simulated as in the weak-strong regime.

γ = 0.1 γ = 1 γ = 2 γ = 3 γ = 4
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Weak-strong regime: power to select M0 or M1

Grey curves are bounds on the theoretically optimal power.

γ = 0.1 γ = 1 γ = 2 γ = 3 γ = 4
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Weak-strong regime: varying sample sizes

Fix γ = 1 and vary n.

n = 100 n = 200 n = 500 n = 1000 n = 2500 n = 5000
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Weak-strong regime: varying sample sizes

Grey curves are bounds on the theoretically optimal power.

n = 100 n = 200 n = 500 n = 1000 n = 2500 n = 5000
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Weak-weak regime: size under M0 and M1

The weak-weak regime.

n = 20 n = 50 n = 100 n = 500 n = 1000
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Weak-weak regime: power to select M0 or M1

Grey curves are bounds on the theoretically optimal power.

n = 20 n = 50 n = 100 n = 500 n = 1000
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Projected Wishart

Draw Σ ∼Wishart
(
ν, (σij)3×3 = (−1

2 )|i−j |
)

and then projected Σ

to M0 and M1 by MLE.
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Projected Wishart

Draw Σ ∼Wishart
(
ν, (σij)3×3 = (−1

2 )|i−j |
)

and then projected Σ

to M0 and M1 by MLE.
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Linear regression

(Y1,Y2,Y3) = X ᵀ(β1, β2, β3) + ε with ε ∼ N (0,Σ(i)). Σ(i) is

drawn from the projected Wishart.

Y1 ⊥⊥ Y2 | X1, · · ·Xp X1 X2 · · · Xp

Y1 Y3 Y2

Y1 ⊥⊥ Y2 | Y3,X1, · · ·Xp X1 X2 · · · Xp

Y1 Y3 Y2
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Linear regression

(Y1,Y2,Y3) = X ᵀ(β1, β2, β3) + ε with ε ∼ N (0,Σ(i)). Σ(i) is

drawn from the projected Wishart.
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Real-data example: American occupational structure

Blau and Duncan (1967) measured the following covariates on

n = 20, 700 subjects:

V : father’s educational attainment,

X : father’s occupational status,

U: educational attainment,

W : status of the first job,

Y : status of occupation in 1962.

Blau and Duncan summarized the data as a correlation matrix.
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Real-data example: structure learning

We run PC algorithm at level α = 0.01. It first identifies the

skeleton by d-separation, which only removes the edge between V

and Y based on Y ⊥⊥ V | U,X .

V U

X W

Y

The blue edges are oriented based on a common-sense temporal

ordering {V ,X} < U < {W ,Y }.
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Real-data example: structure learning

V U

X W

Y

Next, the PC algorithm orients edges based on V -structures. The

orientation of V − X is statistically unidentifiable (no V -structure).

However, the orientation of W − Y raises the question of testing

M0 (Y →W ) : V ⊥⊥ Y | U,X , M1 (Y ←W ) : V ⊥⊥ Y |W ,U,X .

We have λ
(0:1)
n = 3.72 and p-value = 0.026 under the envelope

distribution F̄ρ̂n . Hence, under α = 0.01 we would leave the edge

unoriented (even though n = 20, 700!). 53



Future work

Can we generalize the method as an off-the-shelf tool for

non-nested model selection with error guarantees?

• Mi as a manifold defined on some ambient Θ. Models can

have different dimensions.

• The simplest case is to select between two models. Dealing

with more than two models involves multiplicity correction.
• Need a characterization of all possible stable laws of λ(0:1).

• Take any θ ∈M0 ∩M1 and consider θ
(0)
n , θ

(1)
n → θ in

respective neighborhoods. θ
(0)
n and θ

(1)
n are “closest” to each

other in the KL sense.

• Recall that ρ13ρ23 is effectively the parameter that determines

the distribution of λ(0:1).

• Can we always introduce a reparametrization such that the

asymptotic at every neighborhood is equivalent to something

simple, even under high-order equivalence (Evans, 2018)?

• Take an envelope over all these laws. 54



Thanks!
For details: https://arxiv.org/abs/1906.01850
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Blau and Duncan dataset

Data collected during the March, 1962 Current Population Survey,

on a nationwide sample of about 20,000 American men aged 20-64.

• Occupational statuses are measured by some index.

• Educational attainment is measured by some coding for the

number of years of schooling completed.

Sn =


1.000 0.516 0.453 0.332 0.322

0.516 1.000 0.438 0.417 0.405

0.453 0.438 1.000 0.538 0.596

0.332 0.417 0.538 1.000 0.541

0.322 0.405 0.596 0.541 1.000

 .



Limit experiment

Consider an “experiment” E = (X ,A,Ph : h ∈ H) in the sense of

van der Vaart. h is typically a local parameter.

Fix a “base” h0 ∈ H. The likelihood ratio process is(
dPh

dPh0

(X )

)
h∈H

, X ∼ Ph0 .

A sequence of experiments En = (Xn,An,Ph,n : h ∈ H) converges

a limit experiment E = (X ,A,Ph : h ∈ H) if the likelihood ratio

process weakly converges (marginally). That is, for any finite

subset I ⊂ H and any h0 ∈ H,(
dPh,n

dPh0,n
(Xn)

)
h∈I

h0 

(
dPh

dPh0

(X )

)
h∈I

.



Limit experiment

If (Pn,θ : θ ∈ Θ) is locally asymptotic normal (LAN) with norming

sequence n−1/2 and non-singular Iθ, then the sequence of

experiments (Pθ+n−1/2,n : h ∈ Rd) converges to the limit

experiment (N (h, I−1
θ ) : h ∈ Rd).
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