# On Testing Marginal versus Conditional Independence

Richard Guo ricguo@uw.edu

Nov, 2019

Department of Statistics, University of Washington, Seattle

# Introduction

Inferring causal structures usually involves model selection among directed acyclic graphs (DAGs).

While learning undirected graphical models has been relatively well-developed (e.g., graphical lasso, neighborhood selection), model selection for DAGs is less well-understood.

This poses a challenge to maintaining error guarantee in causal inference, even in large samples. In this talk, I will analyze the simplest example where such a challenge arises.

Consider  $(X_1, X_2, X_3)^{\intercal} \sim \mathcal{N}(0, \Sigma)$  on  $\mathbb{R}^3$ .

Covariance  $\Sigma \in \mathbb{S}^3$ , the set of  $3 \times 3$  real positive definite matrices.

We want to test between

assuming that at least one of them is true.

 $X_1 - X_3 - X_2$  includes the following Markov-equivalent DAGs $X_1 \leftarrow X_3 \leftarrow X_2, \quad X_1 \rightarrow X_3 \rightarrow X_2, \quad X_1 \leftarrow X_3 \rightarrow X_2.$ 

Testing between

$$\mathcal{M}_0$$
:  $X_1 \perp\!\!\!\perp X_2$  vs.  $\mathcal{M}_1$ :  $X_1 \perp\!\!\!\perp X_2 \mid X_3$ 

is a **non-nested** model selection problem.

They correspond to equality/algebraic constraints on  $\Sigma = \{\sigma_{ij}\}$ :

$$\mathcal{M}_0: \sigma_{12} = 0,$$
  
$$\mathcal{M}_1: \sigma_{12\cdot 3} = \sigma_{12} - \sigma_{13}\sigma_{33}^{-1}\sigma_{23} = 0 \iff \sigma_{12}\sigma_{33} = \sigma_{13}\sigma_{23}.$$

 $\mathcal{M}_0$  and  $\mathcal{M}_1$  intersect at the two axes

$$\mathcal{M}_0 \cap \mathcal{M}_1 = \{\sigma_{12} = \sigma_{13} = 0\} \cup \{\sigma_{12} = \sigma_{23} = 0\}.$$

Geometry

We visualize the parameter space in the correlation space.



The two axes further intersect at the origin

$$\mathcal{M}_{sing}: \{\sigma_{12}=\sigma_{13}=\sigma_{23}=\mathbf{0}\},$$

which is a **singularity**.  $\mathcal{M}_{sing}$  corresponds to diagonal  $\Sigma$ .

- $\mathcal{M}_0 \cap \mathcal{M}_1$  vs.  $\mathbb{S}^3$ : Likelihood-ratio test (LRT) was studied by Drton (2006, 2009) and Drton and Sullivant (2007).
  - LRT has a non-standard asymptotic distribution at  $\mathcal{M}_{\text{sing}}.$
- $\mathcal{M}_0$  vs.  $\mathcal{M}_1 {:}$  At  $\mathcal{M}_{sing},$  the tangent cones of the two models coincide.
  - They are called "1-equivalent" by Evans (2018), meaning that linear approximations to the parameter space are the same.
  - In the Euclidean m<sup>-1/2</sup>-ball of M<sub>sing</sub>, m<sup>2</sup> samples are required to distinguish M<sub>0</sub> and M<sub>1</sub>.

Model selection for DAGs is usually conducted by the following approaches (Drton and Maathuis, 2017).

- Score-based: Picking the model with the highest penalized likelihood score (e.g., AIC, BIC).
   Since dim(M<sub>0</sub>) = dim(M<sub>1</sub>), both AIC and BIC will pick the model with the higher likelihood.
- Constraint-based: Testing

 $\mathcal{M}_0$ :  $X_1 \perp \!\!\!\perp X_2$  vs.  $\mathcal{M}_1$ :  $X_1 \perp \!\!\!\perp X_2 \mid X_3$ .

This is adopted by the PC algorithm. For Gaussian data, Fisher's *z*-transformation of partial correlation is used as the test statistic.

#### Difficulty

Simulated with n = 1,000,  $\rho = 0.3$  and unit variances under level  $\alpha = 0.05$ .





8

## Method

Consider a parametric family  $\{P_{\theta} : \theta \in \Theta\}$ , where  $\Theta$  is an open subset of  $\mathbb{R}^d$ . For  $\Theta_0 \subseteq \Theta$ , suppose we want to test

$$\mathcal{H}_0: \theta \in \Theta_0 \quad \text{vs.} \quad \mathcal{H}_1: \theta \in \Theta.$$

Under regularity, the likelihood ratio test (LRT) statistic

$$\lambda_n = 2\left(\sup_{\theta} \ell_n(\theta) - \sup_{\theta_0} \ell_n(\theta)\right) \stackrel{d}{\Rightarrow} \chi_c^2,$$

where  $c = d - \dim(\Theta_0)$ .  $\ell_n(\cdot)$  is the log-likelihood under sample size *n*.

For example, in linear regression  $y \sim \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$ . We use  $\chi^2_2$  for testing

$$\mathcal{H}_0: \beta_0 = \beta_1 = 0$$
 vs.  $\mathcal{H}_1: \beta \in \mathbb{R}^4$ .

Similarly, we define the log-likelihood ratio of  $\mathcal{M}_0$  versus  $\mathcal{M}_1$  as

$$\begin{split} \lambda_n^{(0:1)} &:= 2 \left( \sup_{\Sigma \in \mathcal{M}_0} \ell_n(\Sigma) - \sup_{\Sigma \in \mathcal{M}_1} \ell_n(\Sigma) \right) \\ &= 2 \left( \ell_n(\hat{\Sigma}_n^{(0)}) - \ell_n(\hat{\Sigma}_n^{(1)}) \right), \end{split}$$

where  $\hat{\Sigma}_n^{(0)}$ ,  $\hat{\Sigma}_n^{(1)}$  are MLEs within  $\mathcal{M}_0$  and  $\mathcal{M}_1$  respectively.

 $\ell_n(\cdot)$  is the Gaussian log-likelihood function

$$\ell_n(\Sigma) = \frac{n}{2}(-\log|\Sigma| - \operatorname{Tr}(S_n\Sigma^{-1})).$$

The Gaussian MLEs for DAGs take a closed form (Drton and Richardson, 2008), which yields the following expression for the LRT.

$$\lambda_n^{(0:1)} = n \log \left( \frac{\left(s_{13}^2 - s_{11}s_{33}\right)\left(s_{23}^2 - s_{22}s_{33}\right)}{s_{33}} \right) - \\ n \log \left(s_{11}s_{22}\left(\frac{s_{22}s_{13}^2 - 2s_{12}s_{23}s_{13} + s_{11}s_{23}^2}{s_{12}^2 - s_{11}s_{22}} + s_{33}\right) \right),$$

where S is the sample covariance taken with respect to mean zero.

#### Our plan

- 1. An information-theoretic analysis on how well the two models can be distinguished (by any means).
- 2. Look at the regimes of "effect size"  $\sim n$ , such that the optimal error is between 0 and 1.
  - a stable, non-degenerate asymptotic distribution of LRT.
  - We will be doing large-n-small-effect asymptotics!
- 3. Derive the asymptotic distributions.
  - Are they uniform?
- 4. Develop a model selection procedure with error guarantees.

We study the minimax rate of distinguishing two sequences of distributions, one within  $\mathcal{M}_0$  and the other within  $\mathcal{M}_1$ , as they approach  $\mathcal{M}_0 \cap \mathcal{M}_1$ .

Lemma: testing two simple hypotheses

For testing  $H_0: X \sim P$  versus  $H_1: X \sim Q$ , the minimum sum of type-I and type-II errors is  $1 - d_{TV}(P, Q)$ .

Total variation distance

$$\mathrm{d}_{\mathsf{TV}}(P,Q) = \sup_{A} |P(A) - Q(A)| = \frac{1}{2} \int |p - q| \,\mathrm{d}\mu.$$

#### **Optimal error**

Consider a sequence

$$P_n = P_{\Sigma_n^{(0)}}, \quad \Sigma_n^{(0)} \in \mathcal{M}_0 \setminus \mathcal{M}_1, \quad \Sigma_n^{(0)} \to \Sigma^* \in \mathcal{M}_0 \cap \mathcal{M}_1.$$

Correspondingly, let  $Q_n = P_{\Sigma_n^{(1)}}$  from  $\mathcal{M}_1 \setminus \mathcal{M}_0$  such that

$$\Sigma_n^{(1)} = \operatorname*{arg\,min}_{\Sigma \in \mathcal{M}_1 ackslash \mathcal{M}_0} \mathcal{D}_{\mathsf{KL}}(P_{\Sigma_n^{(0)}} \| P_{\Sigma}),$$

which is the most difficult to distinguish from.

With  $P_n = P_{\Sigma_n^{(0)}}$  and  $Q_n = P_{\Sigma_n^{(1)}}$ , let us compute the total variation between the product measures (*n* iid samples).

The limiting optimal error can be sandwiched by the Hellinger distance  $H(P, Q) := \left\{ \frac{1}{2} \int (\sqrt{p} - \sqrt{q})^2 \, \mathrm{d}\mu \right\}^{1/2}$ .

 $H^{2}(P_{n}^{n},Q_{n}^{n}) \leq \mathrm{d}_{\mathsf{TV}}(P_{n}^{n},Q_{n}^{n}) \leq H(P_{n}^{n},Q_{n}^{n})\sqrt{2-H^{2}(P_{n}^{n},Q_{n}^{n})}.$ 

#### **Optimal error**

With some algebra, we have

$$1 - d_{\mathsf{TV}}(P_n^n, Q_n^n) \to \begin{cases} 0, & H(P_n, Q_n) = \omega(n^{-1/2}) \\ 1, & H(P_n, Q_n) = o(n^{-1/2}) \end{cases}$$

and when  $H(P_n, Q_n) \asymp n^{-1/2}$ ,

$$0 < \liminf_{n} \{1 - \mathrm{d}_{\mathsf{TV}}(\mathcal{P}_n^n, \mathcal{Q}_n^n)\} \le \limsup_{n} \{1 - \mathrm{d}_{\mathsf{TV}}(\mathcal{P}_n^n, \mathcal{Q}_n^n)\} < 1.$$

#### **Effect size**

$$H(P_n, Q_n) \asymp \rho_{13,n} \rho_{23,n},$$

where  $\rho_{ij} = \sigma_{ij} / \sqrt{\sigma_{ii}\sigma_{jj}}$  is the correlation coefficient.

#### **Optimal error**

Comparing  $H(P_n, Q_n)$  to  $n^{-1/2}$ , to stabilize the asymptotic error, there are two regimes.

#### **Two regimes**

$$\begin{cases} 1 - d_{\mathsf{TV}}(P_n^n, Q_n^n) \} \to c \in (0, 1) \\ \\ & \text{iff} \begin{cases} \rho_{13,n} \asymp \gamma n^{-1/2}, & \rho_{23,n} \to \rho_{23} \neq 0 \\ \rho_{23,n} \asymp \gamma n^{-1/2}, & \rho_{13,n} \to \rho_{13} \neq 0 \\ \\ \rho_{13,n} \rho_{23,n} \asymp \delta n^{-1/2}, & \rho_{13,n}, \rho_{23,n} \to 0. \end{cases} \quad \text{``weak-weak''}$$

We study the (local) asymptotic distribution of  $\lambda_n^{(0:1)}$ .

For  $r = \gamma \sqrt{\sigma_{11}\sigma_{33}}$ , we set

$$\begin{split} \Sigma_n^{(0)} &= \begin{pmatrix} \sigma_{11} & 0 & r/\sqrt{n} \\ 0 & \sigma_{22} & \sigma_{23} \\ r/\sqrt{n} & \sigma_{23} & \sigma_{33} \end{pmatrix}, \\ \Sigma_n^{(1)} &= \begin{pmatrix} \sigma_{11} & (r/\sqrt{n})\sigma_{23}/\sigma_{33} & r/\sqrt{n} \\ (r/\sqrt{n})\sigma_{23}/\sigma_{33} & \sigma_{22} & \sigma_{23} \\ r/\sqrt{n} & \sigma_{23} & \sigma_{33} \end{pmatrix}, \\ \Sigma_n^{(0)}, \Sigma_n^{(1)} &\to \Sigma^* &= \begin{pmatrix} \sigma_{11} & 0 & 0 \\ 0 & \sigma_{22} & \sigma_{23} \\ 0 & \sigma_{23} & \sigma_{33} \end{pmatrix} \end{split}$$

#### Asymptotics: weak-strong regime



Let  $Z_1, Z_2$  be two independent standard normals.

#### LRT in the weak-strong regime

Under  $\Sigma_n^{(0)}$ ,

$$\lambda_n^{(0:1)} \stackrel{d}{\Rightarrow} \rho \left[ \left( Z_1 + \frac{\gamma}{\sqrt{2(1-\rho)}} \right)^2 - \left( Z_2 + \frac{\gamma}{\sqrt{2(1+\rho)}} \right)^2 \right];$$

Under  $\Sigma_n^{(1)}$ ,

$$\lambda_n^{(0:1)} \stackrel{d}{\Rightarrow} \rho \left[ \left( Z_1 + \gamma \sqrt{\frac{1-\rho}{2}} \right)^2 - \left( Z_2 + \gamma \sqrt{\frac{1+\rho}{2}} \right)^2 \right].$$

#### Asymptotics: weak-strong regime



The asymptotic distribution is a scaled difference between two independent non-central  $\chi_1^2$  variables.

- No simple analytic form for PDF/CDF.
- Adding an n<sup>-1/2</sup> shift to other elements in Σ<sub>n</sub> does not change the distribution (regularity).
- Can be derived from local asymptotic normality (LAN) or Le Cam's 3rd Lemma (change of measure under contiguity).

#### Asymptotics: weak-weak regime



21

Under the weak-weak regime  $\rho_{13,n}\rho_{23,n} = \delta n^{-1/2}$ , e.g.,  $\rho_{13,n} = \sqrt{\delta} n^{-1/3}$  and  $\rho_{23,n} = \sqrt{\delta} n^{-1/6}$ , the usual tactics fail due to irregularity: (i)  $\mathcal{M}_0$  and  $\mathcal{M}_1$  cannot be embedded into the same LAN family; (ii) contiguity to an iid static law no longer holds.  $P_n^n, Q_n^n$  contiguous to each other, but neither contiguous to  $P_{\Sigma^*}^n$ .



**Figure 1:**  $\mathcal{M}_0$  and  $\mathcal{M}_1$  are  $\sqrt{\delta}$  away from origin; but they are  $\delta$  away from each other (Evans, 2018).

Thanks to the closed form of  $\lambda_n^{(0:1)}$ , by a manual "change of measure" (relating the distribution of sample covariance under  $\Sigma_n^{(i)}$  to that under  $\Sigma = I$ ), we obtain a Gaussian limit.

LRT in the weak-weak regime

For 
$$\rho_{13,n}\rho_{23,n} = \delta n^{-1/2} + o(n^{-1/2})$$
,

$$\lambda_n^{(0:1)} \stackrel{d}{\Rightarrow} \begin{cases} \delta(2Z+\delta) =_d \mathcal{N}(\delta^2, (2\delta)^2), & \text{under } \Sigma_n^{(0)} \\ \delta(2Z-\delta) =_d \mathcal{N}(-\delta^2, (2\delta)^2), & \text{under } \Sigma_n^{(1)} \end{cases}$$

The limit only depends on  $\delta$ . It does **not** depend on how  $\rho_{13,n}$  and  $\rho_{23,n}$  approach zero individually.

#### Limit experiments

Asymptotically, testing between  $\mathcal{M}_0$  and  $\mathcal{M}_1$  is equivalent to testing **the location of a normal between two lines**, from a single Gaussian observation.

It is characterized by an **angle** and an **intercept**.



Due to non-nestedness, we refrain from choosing either as the "null". Instead, we consider a **three-way** decision rule

$$\phi_n: \Sigma_n \to \{\mathcal{M}_0, \mathcal{M}_1, \mathcal{M}_0 \cup \mathcal{M}_1\}.$$

#### Size

For all  $\Sigma_n \to \Sigma^*$  on  $\mathcal{M}_i \setminus \mathcal{M}_{1-i}$  for i = 0, 1, control

$$\limsup_{n\to\infty} P_{\Sigma_n}(\phi_n=\mathcal{M}_{1-i})\leq \alpha.$$

The limit  $\Sigma^*$  could be in  $\mathcal{M}_0 \cap \mathcal{M}_1$  or  $\mathcal{M}_i \setminus \mathcal{M}_{1-i}$ .

#### **Power**

Under  $\Sigma_n \to \Sigma^*$  from  $\mathcal{M}_i \setminus \mathcal{M}_{1-i}$ , power is defined as

 $\liminf_{n\to\infty} P_{\Sigma_n}(\phi_n=\mathcal{M}_i).$ 

Given the (1) regime, (2)  $\rho$  and (3) the local parameter ( $\gamma$  or  $\delta$ ), a three-way decision can be constructed from asymptotic quantiles.



But this is impossible.

- Depends on the **regime** ("where"): weak-strong or weak-weak.
  - Discontinuity across regimes: the law under weak-strong does not converge to that of weak-weak when  $\rho \rightarrow 0$ .
- Depends on the local parameter  $\gamma$  or  $\delta$  ("how").
  - Local parameter has scale  $n^{-1/2}$ , not point-identified.
  - Impossible to judge if an edge is weak based on whether its confidence interval contains zero without further assumptions.
- Further, a procedure that tries to first estimate "where" and "how" before applying the decision rule is susceptible to irregularity issues.



$$F_0^{-1}(\alpha) = (\delta + \Phi^{-1}(\alpha))^2 - \Phi^{-1}(\alpha)^2.$$





$$F_0^{-1}(\alpha) = (\delta + \Phi^{-1}(\alpha))^2 - \Phi^{-1}(\alpha)^2.$$





$$F_0^{-1}(\alpha) = (\delta + \Phi^{-1}(\alpha))^2 - \Phi^{-1}(\alpha)^2.$$





$$F_0^{-1}(\alpha) = (\delta + \Phi^{-1}(\alpha))^2 - \Phi^{-1}(\alpha)^2.$$





$$F_0^{-1}(\alpha) = (\delta + \Phi^{-1}(\alpha))^2 - \Phi^{-1}(\alpha)^2.$$





Taking extremal quantiles for every  $\alpha$  is equivalent to taking pointwise supremum of CDF over the local parameter  $\gamma$  or  $\delta$ .

#### **Envelope distribution**

Given a family of distribution functions  $\{F_h : h \in \mathcal{H}\}$  on  $\mathbb{R}$ , define

$$\bar{F}^*(x) := \sup_{h\in\mathcal{H}} F_h(x),$$

#### and

$$\bar{F}(x) := \begin{cases} \bar{F}^*(x), & \bar{F}^* \text{ is continuous at } x \\ \lim_{y \to x^+} \bar{F}^*(y), & \bar{F}^* \text{ is discontinuous at } x \end{cases}$$

We call  $\overline{F}$  the envelope distribution of  $\{F_h : h \in \mathcal{H}\}$  if  $\overline{F}$  is a valid distribution function.

.

#### **Envelope distribution function**

**Lemma**: If  $\overline{F}^*(x) \to 0$  as  $x \to -\infty$ , then  $\overline{F}(x)$  is a valid distribution function.

For the weak-weak regime, it can be shown  $\bar{F} = \frac{1}{2}(-\chi_1^2) + \frac{1}{2}\delta_0$ .



The same phenomenon occurs for the weak-strong regime!

We can verify that  $\overline{F}_{\rho}^{*}(x) \to 0$  as  $x \to -\infty$  for every  $|\rho| \in (0, 1]$ . Therefore,  $\overline{F}_{\rho}$ , the envelope of  $\{F_{\rho,\gamma} : \gamma \in \mathbb{R}\}$ , is a valid distribution function.



#### Continuity of envelope!

**Proposition**:  $\overline{F}_{\rho} \stackrel{d}{\Rightarrow} \overline{F}$  as  $\rho \to 0$ , where  $\overline{F}$  is the envelope distribution for the weak-weak regime.

Further, we show the following properties for  $\{F_{\rho}: -1 \leq \rho \leq 1\}$ .

• 
$$\bar{F}_{\rho} = \bar{F}_{|\rho|}$$
.

- $\overline{F}_{\rho}$  under  $\mathcal{M}_0 \setminus \mathcal{M}_1$  and  $\mathcal{M}_1 \setminus \mathcal{M}_0$  have the same form.
- The positive part of  $\overline{F}_{\rho}$  for  $|\rho| \in (0, 1]$  is distributed as the positive part of  $\rho(Z_1^2 Z_2^2)$  for two independent standard normals.
- Only the negative part of  $\bar{F}_{\rho}$  is relevant for decision making.
- We do not have an analytic form for the negative part of F
  <sub>ρ</sub>, except for ρ ∈ {-1, 0, 1}.

#### **Envelope quantiles**

Quantiles of  $\bar{F}_{\rho}$  can be evaluated by Monte Carlo on a grid of values for  $\rho$  and interpolating.

It is interesting to notice that  $\bar{F}_{\rho}^{-1}(\alpha)$  is not monotonic in  $|\rho|$ .



#### Model selection procedure: adaptive rule

Note that  $\bar{F}_{\rho}$  is continuous in  $\rho$ . Recall that  $\rho = \rho_{\text{strong}}$  in the weak-strong regime, and  $\rho = 0$  in the weak-weak regime.  $|\rho|$  can be consistently estimated by

$$\hat{\rho}_n = |\hat{\rho}_{13,n}| \vee |\hat{\rho}_{23,n}|.$$



#### **Envelope of envelopes**

The negative parts of  $\{\bar{F}_{\rho}:\rho\in[-1,1]\}$  are dominated by that of  $\bar{F}_{\rho=1}.$ 



#### **Bessel envelope**

 $\bar{F}_{\rho=1}$  is distributed as the difference between two independent  $\chi_1^2$  variables.

It has density involving modified Bessel function of the 2nd kind

$$p_B(u) = \frac{1}{2\pi} K_0(|u|/2).$$



#### Model selection procedure: uniform rule

#### **Uniform rule**

$$\phi_n^{\text{unif}} := \begin{cases} \mathcal{M}_0, \\ \mathcal{M}_1, \\ \mathcal{M}_0 \cup \mathcal{M}_1, \end{cases}$$

$$\lambda_n^{(0:1)} > -\bar{F}_{\rho=1}^{-1}(\alpha)$$
  
$$\lambda_n^{(0:1)} < \bar{F}_{\rho=1}^{-1}(\alpha)$$

otherwise

The quantile is 3.19 for  $\alpha = 0.05$  and 5.97 for  $\alpha = 0.01$ .

#### Error guarantee (rate-free)

**Theorem**: The adaptive rule  $\phi_n^{ada}$  controls asymptotic error uniformly below  $\alpha$  for  $0 < \alpha < 1/2$ .

- This holds for the local model sequences  $\rho_{13,n}\rho_{23,n} \asymp n^{-1/2}$  such that the asymptotic error is between 0 and 1.
- This also holds for  $\rho_{13,n}\rho_{23,n} = o(n^{-1/2})$  since  $\lambda_n^{(0:1)} \rightarrow_p 0$  and  $\Pr(\phi_n = \mathcal{M}_0 \cup \mathcal{M}_1) \rightarrow 1$ .
- And also holds for  $\rho_{13,n}\rho_{23,n} = \omega(n^{-1/2})$  where  $\lambda_n^{(0:1)}$  goes to  $\pm \infty$ .

Hence, our guarantee holds under  $P_{\Sigma_n}^n$  for any converging sequence  $\Sigma_n$ . An assumption on the rate of signal strength is not required.

**Corollary**:  $\phi_n^{\text{unif}}$  has the same guarantee.

*p*-value

When it is desired to report a *p*-value, the rules can be restated as

$$\phi_n = \begin{cases} \mathcal{M}_0, & \lambda_n^{(0:1)} > 0 \text{ and } p\text{-value} < \alpha \\ \mathcal{M}_1, & \lambda_n^{(0:1)} < 0 \text{ and } p\text{-value} < \alpha \\ \mathcal{M}_0 \cup \mathcal{M}_1, & \text{otherwise} \end{cases}$$

where a potentially conservative p-value is defined as

$$p$$
-value :=  $ar{F}_{
ho}(-|\lambda_n^{(0:1)}|)$ 

for  $\rho = 1$  (uniform) or  $\rho = \hat{\rho}_n$  (adaptive).

# Numerical results

Naive Simply choosing the model with highest likelihood/AIC/BIC

$$\phi_n^{\mathsf{naive}} := egin{cases} \mathcal{M}_0, & \lambda_n^{(0:1)} > 0 \ \mathcal{M}_1, & \lambda_n^{(0:1)} < 0 \end{cases}$$

Interval selection This is based on Drton and Perlman (2004). Construct (marginally)  $(1 - \alpha)$ -level confidence intervals for  $\rho_{12}$ and  $\rho_{12\cdot3}$ , and let

$$\phi_n^{\text{interval}} := \begin{cases} \mathcal{M}_0, & \text{only C.I. for } \rho_{12} \text{ contains 0} \\ \mathcal{M}_1, & \text{only C.I. for } \rho_{12.3} \text{ contains 0} \\ \mathcal{M}_0 \cup \mathcal{M}_1, & \text{both C.I.'s contain 0} \end{cases}$$

 $\phi_n^{\text{interval}}$  guarantees asymptotic size below  $\alpha$  (suppose  $\mathcal{M}_0$  is true, then one only makes an error when the C.I. for  $\rho_{12}$  does not contain zero).

#### Weak-strong regime: size under $\mathcal{M}_0$ and $\mathcal{M}_1$

Models are simulated as in the weak-strong regime.



#### Weak-strong regime: power to select $\mathcal{M}_0$ or $\mathcal{M}_1$

Grey curves are bounds on the theoretically optimal power.



#### power of procedure under different values of $\boldsymbol{\gamma}$

Fix  $\gamma = 1$  and vary *n*.

size of procedure under different n

4000 replicates,  $\alpha = 0.05$ ,  $\gamma = 1$ 



Grey curves are bounds on the theoretically optimal power.



power of procedure under different n

The weak-weak regime.



#### Weak-weak regime: power to select $\mathcal{M}_0$ or $\mathcal{M}_1$

Grey curves are bounds on the theoretically optimal power.



Draw  $\Sigma \sim \text{Wishart} \left( \nu, (\sigma_{ij})_{3 \times 3} = (-\frac{1}{2})^{|i-j|} \right)$  and then projected  $\Sigma$  to  $\mathcal{M}_0$  and  $\mathcal{M}_1$  by MLE.

size of procedure on the projected Wishart 4000 replicates,  $\alpha = 0.05$ 



Draw  $\Sigma \sim \text{Wishart} \left( \nu, (\sigma_{ij})_{3 \times 3} = (-\frac{1}{2})^{|i-j|} \right)$  and then projected  $\Sigma$  to  $\mathcal{M}_0$  and  $\mathcal{M}_1$  by MLE.

power of procedure on the projected Wishart 4000 replicates,  $\alpha = 0.05$ 



#### Linear regression

 $(Y_1, Y_2, Y_3) = X^{\intercal}(\beta_1, \beta_2, \beta_3) + \varepsilon$  with  $\varepsilon \sim \mathcal{N}(0, \Sigma^{(i)})$ .  $\Sigma^{(i)}$  is drawn from the projected Wishart.



 $(Y_1, Y_2, Y_3) = X^{\intercal}(\beta_1, \beta_2, \beta_3) + \varepsilon$  with  $\varepsilon \sim \mathcal{N}(0, \Sigma^{(i)})$ .  $\Sigma^{(i)}$  is drawn from the projected Wishart.

#### size and power conditional on p covariates

n = 1000, 1000 replicates,  $\alpha$  = 0. 05



Blau and Duncan (1967) measured the following covariates on n = 20,700 subjects:

- V: father's educational attainment,
- X: father's occupational status,
- U: educational attainment,
- W: status of the first job,
- Y: status of occupation in 1962.

Blau and Duncan summarized the data as a correlation matrix.

We run PC algorithm at level  $\alpha = 0.01$ . It first identifies the skeleton by *d*-separation, which only removes the edge between *V* and *Y* based on *Y*  $\perp$  *V* | *U*, *X*.



The blue edges are oriented based on a common-sense temporal ordering  $\{V, X\} < U < \{W, Y\}$ .

#### Real-data example: structure learning



Next, the PC algorithm orients edges based on V-structures. The orientation of V - X is statistically unidentifiable (no V-structure).

However, the orientation of W - Y raises the question of testing

$$\mathcal{M}_0 (Y \to W) : V \perp Y \mid U, X, \quad \mathcal{M}_1 (Y \leftarrow W) : V \perp Y \mid W, U, X.$$
  
We have  $\lambda_n^{(0:1)} = 3.72$  and *p*-value = 0.026 under the envelope distribution  $\overline{F}_{\hat{\rho}_n}$ . Hence, under  $\alpha = 0.01$  we would leave the edge **unoriented** (even though  $n = 20, 700!$ ).

#### Future work

Can we generalize the method as an off-the-shelf tool for non-nested model selection with error guarantees?

- *M<sub>i</sub>* as a manifold defined on some ambient Θ. Models can have different dimensions.
- The simplest case is to select between two models. Dealing with more than two models involves multiplicity correction.
- Need a characterization of all possible stable laws of  $\lambda^{(0:1)}$ .
  - Take any  $\theta \in \mathcal{M}_0 \cap \mathcal{M}_1$  and consider  $\theta_n^{(0)}, \theta_n^{(1)} \to \theta$  in respective neighborhoods.  $\theta_n^{(0)}$  and  $\theta_n^{(1)}$  are "closest" to each other in the KL sense.
  - Recall that  $\rho_{13}\rho_{23}$  is effectively the parameter that determines the distribution of  $\lambda^{(0:1)}$ .
  - Can we always introduce a **reparametrization** such that the asymptotic at every neighborhood is equivalent to something simple, even under high-order equivalence (Evans, 2018)?
  - Take an envelope over all these laws.

# Thanks!

For details: https://arxiv.org/abs/1906.01850

## **Additional slides**

Data collected during the March, 1962 Current Population Survey, on a nationwide sample of about 20,000 American men aged 20-64.

- Occupational statuses are measured by some index.
- Educational attainment is measured by some coding for the number of years of schooling completed.

$$S_n = \begin{pmatrix} 1.000 & 0.516 & 0.453 & 0.332 & 0.322 \\ 0.516 & 1.000 & 0.438 & 0.417 & 0.405 \\ 0.453 & 0.438 & 1.000 & 0.538 & 0.596 \\ 0.332 & 0.417 & 0.538 & 1.000 & 0.541 \\ 0.322 & 0.405 & 0.596 & 0.541 & 1.000 \end{pmatrix}$$

#### Limit experiment

Consider an "experiment"  $\mathcal{E} = (\mathcal{X}, \mathcal{A}, P_h : h \in H)$  in the sense of van der Vaart. *h* is typically a local parameter.

Fix a "base"  $h_0 \in H$ . The likelihood ratio process is

$$\left(\frac{\mathrm{d}P_h}{\mathrm{d}P_{h_0}}(X)\right)_{h\in H}, \quad X\sim P_{h_0}.$$

A sequence of experiments  $\mathcal{E}_n = (\mathcal{X}_n, \mathcal{A}_n, P_{h,n} : h \in H)$  converges a limit experiment  $\mathcal{E} = (\mathcal{X}, \mathcal{A}, P_h : h \in H)$  if the likelihood ratio process weakly converges (marginally). That is, for any finite subset  $I \subset H$  and any  $h_0 \in H$ ,

$$\left(\frac{\mathrm{d} P_{h,n}}{\mathrm{d} P_{h_0,n}}(X_n)\right)_{h\in I} \stackrel{h_0}{\leadsto} \left(\frac{\mathrm{d} P_h}{\mathrm{d} P_{h_0}}(X)\right)_{h\in I}$$

#### Limit experiment

If  $(P_{n,\theta} : \theta \in \Theta)$  is locally asymptotic normal (LAN) with norming sequence  $n^{-1/2}$  and non-singular  $I_{\theta}$ , then the sequence of experiments  $(P_{\theta+n^{-1/2},n} : h \in \mathbb{R}^d)$  converges to the limit experiment  $(\mathcal{N}(h, I_{\theta}^{-1}) : h \in \mathbb{R}^d)$ .

# References

- Blau, Peter M and Otis Dudley Duncan (1967). *The American Occupational Structure*. Wiley New York.
- Drton, Mathias (2006). "Algebraic techniques for Gaussian models". In: Prague Stochastics. Ed. by M. Hušková and M. Janžura. Matfyzpress, Charles Univ.
- (2009). "Likelihood ratio tests and singularities". In: The Annals of Statistics 37.2, pp. 979–1012.
- Drton, Mathias and Marloes H Maathuis (2017). "Structure learning in graphical modeling". In: Annual Review of Statistics and Its Application 4, pp. 365–393.

#### References ii

- Drton, Mathias and Michael D Perlman (2004). "Model selection for Gaussian concentration graphs". In: *Biometrika* 91.3, pp. 591–602.
- Drton, Mathias and Thomas S Richardson (2008). "Graphical methods for efficient likelihood inference in Gaussian covariance models". In: *Journal of Machine Learning Research* 9.May, pp. 893–914.
- Drton, Mathias and Seth Sullivant (2007). "Algebraic statistical models". In: Statistica Sinica, pp. 1273–1297.
  - Evans, Robin J (2018). "Model selection and local geometry". In: arXiv preprint arXiv:1801.08364v3.