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Motivation



Domestic violence calls
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Background

Police responding to domestic violence calls:

1970s “hands-off” approach, “arrests only be made in cases of serious violence” in

NYC

1970s/1980s women’s advocacy groups were calling on police to take domestic violence more

seriously and change intervention strategy

1980s ↪→ National Institute of Justice funds Minneapolis Domestic Violence

Experiment
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Minneapolis Domestic Violence Experiment

Domestic violence 911 calls. Both victim and offender must be at scene to be included in the

study.

▶ When an officer believes that a domestic violence case has occurred, he/she is instructed to

take one of the 3 courses of action by a lottery system:

• Arr : Arrest the offender.

• Adv : Advice and mediation of disputes.

• Sep : Separate the offender from the victim for 8 hours.

☞ This instruction is randomized.

A total of 314 cases were included in the study, and the suspects’ re-offence statuses were

followed up after a 6-month period through self-reports or from a police database.
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Minneapolis Domestic Violence Experiment

• Z : action instructed
• X : action taken
• Y : no re-offence / re-offence in 6-month follow-up

X = Arr X = Adv X = Sep

Z = Arr 81/10 0/0 1/0

Z = Adv 15/3 69/15 3/3

Z = Sep 21/5 4/1 62/20
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Minneapolis Domestic Violence Experiment

• Z : action instructed
• X : action taken
• Y : no re-offence / re-offence in 6-month follow-up

X = Arr X = Adv X = Sep

Z = Arr 81/10 0/0 1/0 82/10

Z = Adv 15/3 69/15 3/3 87/21

Z = Sep 21/5 4/1 62/20 87/26

re-offence% Arr Adv Sep

▶ Intent-to-treat (ITT) 11% 19% 23%
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Minneapolis Domestic Violence Experiment

• Z : action instructed
• X : action taken
• Y : no re-offence / re-offence in 6-month follow-up

X = Arr X = Adv X = Sep

Z = Arr 81/10 0/0 1/0

Z = Adv 15/3 69/15 3/3

Z = Sep 21/5 4/1 62/20

re-offence% Arr Adv Sep

▶ Intent-to-treat (ITT) 11% 19% 23%

▶ Per Protocol (PP) 11% 18% 24%

☞ The study found that the offenders assigned to be arrested had lower rates of re-offending than

offenders assigned to counseling or temporarily sent away. (Sherman & Berk, 1984)
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Minneapolis Domestic Violence Experiment

• Z : action instructed
• X : action taken
• Y : no re-offence / re-offence in 6-month follow-up

X = Arr X = Adv X = Sep

Z = Arr 81/10 0/0 1/0

Z = Adv 15/3 69/15 3/3

Z = Sep 21/5 4/1 62/20

Z is (1) randomized and (2) has no effect on re-offence other than through the action taken.

☞ A categorical instrumental variable (IV) model with |Z| = |X | = 3 and |Y| = 2.
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Existing literature

Bounds for binary IV When |Z| = 2, ATE is partially identified by the Manski–Robins

bound or the (narrower) Balke–Pearl bound depending on the assumption.

Generalized to |Z| ≥ 2 by Richardson and Robins (2014).

A comprehensive discussion of the underlying assumptions and results is given in

Swanson et al. (2018).

Falsification Testing whether a given observed distribution is compatible with particular sets

of IV assumptions (Pearl, 1995; Bonet, 2001; Wang et al., 2017; Kédagni &

Mourifié, 2020; Bhadane et al., 2025).

Other related work Beresteanu et al. (2012), Russell (2021), and Luo and Wang (2017)

based on “random set theory”.
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Existing Literature

LATE for binary IV Effect among compliers is point-identified (Imbens & Angrist, 1994), but

need monotonicity assumption (i.e., no defiers).

• requires determining whether a subject would have been a complier had

they been in the experiment (Kennedy et al., 2020).

• e.g. requires judging that had a domestic violence incident happened during

the course of the study, the responding officer would have judged it

according to the assigned strategy, whatever that was.

13



Existing Literature

LATE for binary IV Effect among compliers is point-identified (Imbens & Angrist, 1994), but

need monotonicity assumption (i.e., no defiers).

• requires determining whether a subject would have been a complier had

they been in the experiment (Kennedy et al., 2020).

• e.g. requires judging that had a domestic violence incident happened during

the course of the study, the responding officer would have judged it

according to the assigned strategy, whatever that was.

13



Existing Literature

LATE for binary IV Effect among compliers is point-identified (Imbens & Angrist, 1994), but

need monotonicity assumption (i.e., no defiers).

• requires determining whether a subject would have been a complier had

they been in the experiment (Kennedy et al., 2020).

• e.g. requires judging that had a domestic violence incident happened during

the course of the study, the responding officer would have judged it

according to the assigned strategy, whatever that was.

13



Procrustean analysis: Pretending it is a binary IV?

• Z : action instructed
• X : action taken
• Y : no re-offence / re-offence in 6-month follow-up

X = Arr X = Adv X = Sep

Z = Arr 81/10 0/0 1/0

Z = Adv 15/3 69/15 3/3

Z = Sep 21/5 4/1 62/20

XZ Y

U

%

%(1)
Inde

pen
denc

e cond
ition

(2) Exclusion Restriction

▶ Suppose we only want to contrast Adv vs Sep . Can we just drop the first column?

☞ No, because that would be conditioning on X ̸= Arr , making Z not independent of Y (x)

anymore.

Our Goal ▶ Characterization and partial identification of a generic categorical IV model.
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Categorical IV



Objective

Consider a categorical IV model with

Z = [Q] ≡ {1, . . . ,Q}, X = [K ] ≡ {1, . . . ,K}, Y = [M] ≡ {1, . . . ,M}.

The model obeys the usual consistency assumption and

(1) independence/exogeneity condition, and

(2) exclusion restriction.

▶ Characterize the set of P(Y (x1), . . . ,Y (xK )) that is compatible with P(X ,Y | Z ).
▶ Falsification test of whether a given observed distribution is compatible with the IV

assumptions.

▶ Partially identify ATEs such as E[Y (xk)− Y (xk′)] or any linear functionals of

P(Y (x1), . . . ,Y (xK )).

▶ Construct confidence intervals for ATEs such as E[Y (xk)− Y (xk′)] or any linear

functionals of P(Y (x1), . . . ,Y (xK )).
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What does a characterization mean? The case of binary X ,Y

In an observational study with |Z| = 1, we have

0 ≤%HE ≤ P(X = 0,Y = 0) + P(X = 1,Y = 1)

0 ≤%HU ≤ P(X = 0,Y = 1) + P(X = 1,Y = 0)

0 ≤%NR ≤ P(X = 0,Y = 0) + P(X = 1,Y = 0)

0 ≤%AR ≤ P(X = 0,Y = 1) + P(X = 1,Y = 1)

P(X = 0,Y = 1) ≤ P{Y (0) = 1} ≤ 1− P(X = 0,Y = 0)

P(X = 1,Y = 1) ≤ P{Y (1) = 1} ≤ 1− P(X = 1,Y = 0)
6 pairs of parallel planes

▶ Given the observed probabilities, what do I actually know about my counterfactual

probabilities?

—————————–

%HE: P(Y (0) = 0,Y (1) = 1); %HU: P(Y (0) = 1,Y (1) = 0);

%NR: P(Y (0) = 0,Y (1) = 0); %AR: P(Y (0) = 1,Y (1) = 1).
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Simplest IV Model M1

The simplest IV model M1 is defined by the following assumptions:

1 Consistency

Y = Y (X ,Z ) and X = X (Z )

2 Individual-level exclusion

Y (xi , z) = Y (xi , z̃) for all z , z̃ ∈ [Q], i ∈ [K ], and q ∈ [Q]

3 Random assignment

Z ⊥⊥ (Y (x , z),X (z) : x ∈ [K ], z ∈ [Q])

▶ Our paper also considers four other IV models, M2, . . . ,M5, defined by weaker versions of

the Exclusion and Random assignment assumptions, to which our results also apply.

☞ These models may be of possible interest in testing causal quantum theories.
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IV models M1, . . . ,M5

Model Name Exclusion Independence

M1 Randomization Individual-level Random assignment

M2 Joint Ind. & Indiv. Excl. Individual-level Joint independence

M3 Joint Ind. & Stoch. Excl. Joint stochastic exclusion Joint independence

M4 SWIG Individual-level Single-world independence

M5 Latent Model Latent exclusion Latent-variable exogeneity

☞ M1 ⊆ M2 ⊆ M3, M1 ⊆ M4 and M2 ⊆ M5.

M1

M2

M3

M4

M5

⊃ ⊂

⊃ ⊂
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Characterizing the IV model

Recall in our categorical IV,

Z = [Q] ≡ {1, . . . ,Q}, X = [K ] ≡ {1, . . . ,K}, Y = [M] ≡ {1, . . . ,M}.

Theorem 1 Under any IV model Mi (i = 1, . . . , 5), the set of counterfactual distributions is

characterized by the following set of inequalities: for each z ∈ [Q], we have

P ′
(
Y (x1) ∈ V(1), . . . ,Y (xK ) ∈ V(K)

)
≤

K∑
i=1

P
(
X = i ,Y ∈ V(i)

∣∣∣Z=z
)
, z ∈ [Q],

where V(k) is a non-empty subset of [M] for all k ∈ [K ] and a strict subset of [M] for at least one k.
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Example inequality when |X | = 2, |Y| = 3

Theorem 1 Under any IV model Mi (i = 1, . . . , 5), the set of counterfactual distributions is charac-

terized by the following set of inequalities: for each z ∈ [Q], we have

P ′
(
Y (x1) ∈ V(1), . . . ,Y (xK ) ∈ V(K)

)
≤

K∑
i=1

P
(
X = i ,Y ∈ V(i)

∣∣∣Z=z
)
, z ∈ [Q],

where V(k) is a non-empty subset of [M] for all k ∈ [K ] and a strict subset of [M] for at least one k.

Taking V(1) = {1, 2, 3} and V(2) = {1, 2}, gives

P ′(Y (x1) ∈ V(1),Y (x2) ∈ V(2)) ≤
2∑

i=1

P
(
X = i ,Y ∈ V(i)

∣∣∣Z = z
)
,

which, upon subtracting from one on both sides, becomes

P ′(Y (x2) ̸= 3) ≤ 1− P(X = 2,Y = 3 | Z = z). (▲)

Similarly, taking V(1) = {1, 2, 3} and V(2) = {2, 3}, gives

P ′(Y (x2) ̸= 1) ≤ 1− P(X = 2,Y = 1 | Z = z). (⋆) 20



Bipartite graph and compatible pairs

We can also represent each inequality graphically.

▶ Let us fix Z = z . Consider again |X | = 2, |Y| = 3.

☞ An edge is placed between every pair of (counterfactual, observed) values that are

compatible under the IV model.

(X (z)=1,Y (x1)=1) ⇐⇒ (X = 1,Y = 1)(X (z)=1,Y (x1)=1) ⇐⇒ (X = 1,Y = 1)

(X (z)=1,Y (x1)=2) ⇐⇒ (X = 1,Y = 2)

(X (z)=1,Y (x1)=3) ⇐⇒ (X = 1,Y = 3)

(X (z)=2,Y (x2)=1) ⇐⇒ (X = 2,Y = 1)

(X (z)=2,Y (x2)=2) ⇐⇒ (X = 2,Y = 2)

(X (z)=2,Y (x2)=3) ⇐⇒ (X = 2,Y = 3)

(Y (x1)=1,Y (x2)=1)

(Y (x1)=1,Y (x2)=2)

(Y (x1)=1,Y (x2)=3)

(Y (x1)=2,Y (x2)=1)

(Y (x1)=2,Y (x2)=2)

(Y (x1)=2,Y (x2)=3)

(Y (x1)=3,Y (x2)=1)

(Y (x1)=3,Y (x2)=2)

(Y (x1)=3,Y (x2)=3)

observed (given Z = z)observed (given Z = z)counterfactual
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Example revisited

Our example: V (1) = {1, 2, 3} and V(2) = {1, 2} gives the inequality

P ′(Y (x1) ∈ {1, 2, 3},Y (x2) ∈ {1, 2) ≥ P (X = 1,Y ∈ {1, 2, 3}|Z = z)+P (X = 2,Y ∈ {1, 2}|Z = z) ,

i.e., P ′(Y (x2) ̸= 3) ≤ 1− P(X = 2,Y = 3 | Z = z). (▲)

(X (z)=1,Y (x1)=1) ⇐⇒ (X = 1,Y = 1)

(X (z)=1,Y (x1)=2) ⇐⇒ (X = 1,Y = 2)

(X (z)=1,Y (x1)=3) ⇐⇒ (X = 1,Y = 3)

(X (z)=2,Y (x2)=1) ⇐⇒ (X = 2,Y = 1)

(X (z)=2,Y (x2)=2) ⇐⇒ (X = 2,Y = 2)

(X (z)=2,Y (x2)=3) ⇐⇒ (X = 2,Y = 3)

(Y (x1)=1,Y (x2)=1)

(Y (x1)=1,Y (x2)=2)

(Y (x1)=1,Y (x2)=3)

(Y (x1)=2,Y (x2)=1)

(Y (x1)=2,Y (x2)=2)

(Y (x1)=2,Y (x2)=3)

(Y (x1)=3,Y (x2)=1)

(Y (x1)=3,Y (x2)=2)

(Y (x1)=3,Y (x2)=3)

observed (given Z = z)counterfactual

☞ This shows the necessity of the bound. 22



Theorem 1: proof sketch

Theorem 1 Under any IV model Mi (i = 1, . . . , 5), the set of counterfactual distributions is charac-

terized by the following set of inequalities: for each z ∈ [Q], we have

P ′
(
Y (x1) ∈ V(1), . . . ,Y (xK ) ∈ V(K)

)
≤

K∑
i=1

P
(
X = i ,Y ∈ V(i)

∣∣∣Z=z
)
, z ∈ [Q],

where V(k) is a non-empty subset of [M] for all k ∈ [K ] and a strict subset of [M] for at least one k.

Define ϕ : P(Z ,X ,Y (x1), . . . ,Y (xK ))︸ ︷︷ ︸
∈Mi

7→

P(Y (x1), . . . ,Y (xK ))︸ ︷︷ ︸
counterfactual

, P(X ,Y | Z)︸ ︷︷ ︸
observed

 .

Let T be the set of RHS pairs that obey the inequalities in Theorem 1.

☞ Theorem 1 is equivalent to the claim that ϕ(Mi ) = T , i = 1, . . . , 5.

• ϕ(Mi ) ⊆ T : Relatively easy to show.

• ϕ(Mi ) ⊇ T : Much harder. We show this using a finite-space version of Strassen’s theorem

(Koperberg, 2024; Strassen, 1965). ▶ More user-friendly than the “random set theory”.

• Jointly sufficient: given a joint counterfactual distribution P ′
(
Y (x1) ∈ V(1), . . . ,Y (xK ) ∈ V(K)

)
and an observed distribution P(X ,Y | Z) obeying (1), then there exists a joint distribution

P(Z ,X ,Y (x1), . . . ,Y (xK )) that has margins P and P ′ and is compatible with M1
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Example continued

Recall that we obtained two inequalities

P ′(Y (x2) ̸= 3) ≤ 1− P(X = 2,Y = 3 | Z = z), (▲)

P ′(Y (x2) ̸= 1) ≤ 1− P(X = 2,Y = 1 | Z = z). (⋆)

☞ (▲) + (⋆) leads to

P ′(Y (x2) = 2) ≤ 1− P(X = 2,Y = 1 | Z = z)− P(X = 2,Y = 3 | Z = z) (■),

which, however, is another inequality corresponding to V(1) = {1, 2, 3} and V(2) = {2} in

Theorem 1.

☞ The set of inequalities in Theorem 1 can be redundant.
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A non-redundant set of inequalities

Given a set of inequalities, an individual inequality can be redundant if it is implied by other

inequalities in the set.

☞ By characterizing the extreme points (and hence all the facets of the polytope), we further

arrive at a set of non-redundant inequalities.

Redundant inequalities
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A non-redundant set of inequalities

Recall that Theorem 1 gives inequalities

P ′
(
Y (x1) ∈ V(1), . . . ,Y (xK ) ∈ V(K)

)
≤

K∑
i=1

P
(
X = i ,Y ∈ V (i)

∣∣∣Z=z
)
, z ∈ [Q],

where ∅ ̸= V (k) is a subset of [M] for all k ∈ [K ] and a strict subset of [M] for at least one k.

Theorem 2 The inequalities above can be reduced to a subset that only consists of inequalities

that satisfy either

1 for at least two values k ̸= k∗, we have V(k) ̸= [M] and V(k∗) ̸= [M], or

2 there exist k∗ and m ∈ [M] such that V(k∗) = [M] \ {m} and V(k) = [M] for every

k ̸= k∗.

This set of inequalities are non-redundant and characterize the IV model.

☞ # inequalities =O(Q 2MK ) ≪ O(Q 2M
K

) Artstein’s inequalities in random set theory.
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Falsification of the IV model

☞ Empty intersection of the |Z| polytopes defining the joint counterfactual probability

distribution given each instrument arm Z = z implies falsification of the categorical IV model.
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Statistical inference



Inference targets

1 Construct confidence intervals1 for ATEs

τk,k′ := E[Y (X = k)− Y (X = k ′)], 1 ≤ k < k ′ ≤ K

that contrast all pairs of treatments.

☞ Every ATE τk,k′ is a linear functional of the counterfactual distribution P(Y (x1), . . . ,Y (xK )).

By projecting the polytope we characterized, we can get a tight lower and upper bound.

But this ignores the sampling variability in P̂(X ,Y | Z).

2 Falsification of IV model.

☞ If the data strongly suggests that the observed distribution P(X ,Y | Z ) does not admit

any underlying categorical IV, we should be able to raise an alarm.

1CIs that cover the population-level identified intervals with prescribed coverage.
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Multinomial LRT

Consider a multinomial experiment over N ≥ 2 categories

(X1, . . . ,XN) ∼ Mult(n; (p1, . . . , pN)),

where (p1, . . . , pN) ∈ ∆N−1. Let (p̂1, . . . , p̂N) := (X1, . . . ,XN)/n.

☞ The Wilks’ theorem states that the likelihood ratio test (LRT) statistic

2nDKL(p̂∥p) = 2n
k∑

i=1

p̂i log
p̂i
pi

→d χ2
N−1, n → ∞.

☞ Can we use this reliably for inference?
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Wilks in the wild

☞ Simulate the null distribution of the LRT statistic under two ‘typical’ p’s:

■“sparse” p ∼ Dir(α1 = · · · = αN = 0.5), ■“dense” p ∼ Dir(α1 = · · · = αN = 1).

We keep n/N = 10 and compare these to the Wilks’ chi-squared under growing N = KMQ.
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0.100
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de
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ity

N=KMQ=10, n=100

☞ npi > 5 as a rule of thumb for CLT?

☞ Even ensuring solid coverage for p under N = 2 is non-trivial (Clopper & Pearson, 1934; Brown

et al., 2001).
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A finite-sample Chernoff bound

☞ For conducting inference, we use a finite-sample Chernoff bound (Guo & Richardson, 2021)

P (nDKL(p̂∥p) > t) ≤ min
λ∈[0,1]

exp(−λt)GN,n(λ),

where GN,n is an explicit upper bound on the moment generating function of the LRT that only

depends on the number of categories N and the sample size n.

Finite-sample confidence region. With probability at least 1− α, it holds that

Q∑
z=1

nzDKL (p̂z∥pz) ≤ tα,

where for each arm z ∈ [Q], nz is its sample size and pz ≡ P(X ,Y | Z = z) ∈ ∆KM−1.

☞ a convex confidence region for (pz : z ∈ [Q]) that shrinks at n−1/2 rate.

The critical value tα is determined from the Chernoff bound for Q independent multinomial trials

P

(
Q∑

z=1

nz DKL(p̂z∥pz) > t

)
≤ min

λ∈[0,1]
exp(−λt)

Q∏
z=1

GKM,nz (λ).
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Inference through a convex program

☞ Given a collection linear functionals f1, . . . , fJ (e.g, ATEs), we can construct their confidence

intervals [l1, u1], . . . , [lJ , uJ ] by solving a convex program.

▶ Programming variables:

pz := P(X ,Y | Z = z) ∈ RKM , z ∈ [Q]

p′ := P ′(Y (x1), . . . ,Y (xK )) ∈ RMK

lj = min fj(p
′), uj = max fj(p

′)

s.t. − Hpz + H ′p′ ≤ 0, z = 1, . . . ,Q, (Theorem 2)

Q∑
z=1

nzDKL(p̂z∥pz) ≤ tα,

pz ∈ ∆KM−1, z = 1, . . . ,Q,

p′ ∈ ∆MK−1.

Theorem 4 Under any IV model Mi (i = 1, . . . , 5), with probability at least 1−α it holds that

f1 ∈ [l1, u1], . . . , fJ ∈ [lJ , uJ ] with −∞ < lj < uj < +∞ simultaneously. ☞ non-asymptotic

An alarm is raised when lj = +∞, uj = −∞, which indicates that the IV model is falsified by

data. The probability of a false alarm is below α.
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Data analysis



Revisiting Minneapolis Domestic Violence Experiment

−0.5 0.0 0.5 1.0

R = re−offence in 6−month follow−up

All data
(our method)

P(R | Adv) − P(R | Arr)
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P(R | Sep) − P(R | Arr)

Plugin 95% CI

☞ Our method: Simultaneous coverage.

Number of IV inequalities = 78 ≪ 762 Artstein’s inequalities.

☞ Using more instrument arms can improve the efficiency of the results.

☞ Procrustean binary IV analysis is biased and unnecessary.
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Z = Arr 81/10 0/0 1/0
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Z = Sep 21/5 4/1 62/20

X = Arr X = Adv X = Sep

Z = Arr 81/10 0/0 1/0

Z = Adv 15/3 69/15 3/3

Z = Sep 21/5 4/1 62/20

X = Arr X = Adv X = Sep

Z = Arr 81/10 0/0 1/0
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Z = Sep 21/5 4/1 62/20

33



Revisiting Minneapolis Domestic Violence Experiment

−0.5 0.0 0.5 1.0

R = re−offence in 6−month follow−up

Delete Z=Adv

Delete Z=Arr

Delete Z=Sep

All data 
(our method)

P(R | Adv) − P(R | Arr)

−0.5 0.0 0.5 1.0

P(R | Sep) − P(R | Arr)

Plugin 95% CI

☞ Our method: Simultaneous coverage.

Number of IV inequalities = 78 ≪ 762 Artstein’s inequalities.

☞ Using more instrument arms can improve the efficiency of the results.

☞ Procrustean binary IV analysis is biased and unnecessary.

X = Arr X = Adv X = Sep

Z = Arr 81/10 0/0 1/0

Z = Adv 15/3 69/15 3/3

Z = Sep 21/5 4/1 62/20

X = Arr X = Adv X = Sep

Z = Arr 81/10 0/0 1/0

Z = Adv 15/3 69/15 3/3

Z = Sep 21/5 4/1 62/20

X = Arr X = Adv X = Sep

Z = Arr 81/10 0/0 1/0

Z = Adv 15/3 69/15 3/3

Z = Sep 21/5 4/1 62/20

33



Revisiting Minneapolis Domestic Violence Experiment

R = re−offence in 6−month follow−up

Procrustean Binary IV

Delete Z=Adv

Delete Z=Arr

Delete Z=Sep

All data 
(our method)

−0.5 0.0 0.5 1.0

P(R | Adv) − P(R | Arr)

−0.5 0.0 0.5 1.0

P(R | Sep) − P(R | Arr)

Plugin 95% CI

☞ Our method: Simultaneous coverage.

Number of IV inequalities = 78 ≪ 762 Artstein’s inequalities.

☞ Using more instrument arms can improve the efficiency of the results.

☞ Procrustean binary IV analysis is biased and unnecessary.

X = Arr X = Adv X = Sep

Z = Arr 81/10 0/0 1/0

Z = Adv 15/3 69/15 3/3

Z = Sep 21/5 4/1 62/20

X = Arr X = Adv X = Sep

Z = Arr 81/10 0/0 1/0

Z = Adv 15/3 69/15 3/3

Z = Sep 21/5 4/1 62/20

X = Arr X = Adv X = Sep

Z = Arr 81/10 0/0 1/0

Z = Adv 15/3 69/15 3/3

Z = Sep 21/5 4/1 62/20

33



THANKS

34



References i

References

Beresteanu, A., Molchanov, I., & Molinari, F. (2012).Partial identification using random set

theory. Journal of Econometrics, 166(1), 17–32.

https://doi.org/https://doi.org/10.1016/j.jeconom.2011.06.003

Bhadane, S., Mooij, J. M., Boeken, P., & Zoeter, O. (2025).Revisiting the Berkeley

admissions data: Statistical tests for causal hypotheses. Proceedings of the

Forty-First Conference on Uncertainty in Artificial Intelligence.

Bonet, B. (2001).Instrumentality tests revisited. Proceedings of the 17th Conference in

Uncertainty in Artificial Intelligence, 48–55. https://arxiv.org/abs/1301.2258

Brown, L. D., Cai, T., & DasGupta, A. (2001).Interval estimation for a binomial

proportion. Statistical science, 101–117.

https://doi.org/https://doi.org/10.1016/j.jeconom.2011.06.003
https://arxiv.org/abs/1301.2258


References ii

Clopper, C. J., & Pearson, E. S. (1934).The use of confidence or fiducial limits illustrated

in the case of the binomial. Biometrika, 404–413.

Guo, F. R., & Richardson, T. S. (2021).Chernoff-type concentration of empirical

probabilities in relative entropy. IEEE Transactions on Information Theory, 67, 549–558.

https://api.semanticscholar.org/CorpusID:213004900

Imbens, G. W., & Angrist, J. D. (1994).Identification and estimation of local average

treatment effects. Econometrica, 62(2), 467–475. Retrieved May 14, 2025, from

http://www.jstor.org/stable/2951620
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Exclusion restriction, versions of

(V1) Individual-level Exclusion

Y (xi , z) = Y (xi , z̃) for all z , z̃ ∈ [Q], i ∈ [K ], and q ∈ [Q]

(V2) Joint Stochastic Exclusion

P(Y (x1, z) = y 1, . . . ,Y (xK , z) = yK ) = P(Y (x1, z̃) = y 1, . . . ,Y (xK , z̃) = yK )

for all z , z̃ ∈ [Q] and y 1, . . . , yK ∈ [M]

(V3) Latent Exclusion

P(Y (x , z) = y | U = u) = P(Y (x , z̃) = y | U = u) for all z , z̃ ∈ [Q],

x ∈ [K ] and y ∈ [M] and latent state u.



Independence assumption, versions of

(V1) Random assignment

Z ⊥⊥ (Y (x , z),X (z) : x ∈ [K ], z ∈ [Q])

(V2) Joint independence

Z ⊥⊥ (Y (x , z) : x ∈ [K ], z ∈ [Q])

(V3) Single-world independence

Z ⊥⊥ X (z), Y (x , z), for all z ∈ [Q], x ∈ [K ]

(V4) Latent-variable exogeneity There exists U such that U ⊥⊥ Z , and

Y (x , z) ⊥⊥ X ,Z | U, for all z ∈ [Q], x ∈ [K ]
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