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Motivation



Domestic violence calls




Police responding to domestic violence calls:

1970s “hands-off” approach, “arrests only be made in cases of serious violence” in
NYC

1970s/1980s women's advocacy groups were calling on police to take domestic violence more
seriously and change intervention strategy
1980s < National Institute of Justice funds Minneapolis Domestic Violence
Experiment



Minneapolis Domestic Violence Experiment

Domestic violence 911 calls. Both victim and offender must be at scene to be included in the

study.

» When an officer believes that a domestic violence case has occurred, he/she is instructed to

take one of the 3 courses of action by a lottery system:
e ARR : Arrest the offender.

e ADV : Advice and mediation of disputes.

e SEP : Separate the offender from the victim for 8 hours.

= This instruction is randomized.

A total of 314 cases were included in the study, and the suspects’ re-offence statuses were
followed up after a 6-month period through self-reports or from a police database.



Minneapolis Domestic Violence Experiment

e Z: action instructed
e X: action taken
e Y: no re-offence / re-offence in 6-month follow-up

X=ARR X =Abpv X =SEP

Z = ARR 81/10 0/0 1/0
Z = Apv 15/3 69/15 3/3
Z = SEP 21/5 4/1 62,/20
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Minneapolis Domestic Violence Experiment

e Z: action instructed
e X: action taken
e Y: no re-offence / re-offence in 6-month follow-up

X=ARR X =Abpv X =SEpP

Z = ARR 81/10 / /

Z = Apv / 69/15 /

Z = SEP / / 62/20
re-offence% ARR ADV  SEP

» Intent-to-treat (ITT) 11%  19% 23%
» Per Protocol (PP) 11%  18% 24%

ww The study found that the offenders assigned to be arrested had lower rates of re-offending than
offenders assigned to counseling or temporarily sent away. (Sherman & Berk, 1984)



Minneapolis Domestic Violence Experiment

e Z: action instructed
e X: action taken
e Y: no re-offence / re-offence in 6-month follow-up

X=ARR X =Apv X =SEP

Z = ARR 81/10 0/0 1/0
Z = Apv 15/3 69/15 3/3
Z = SEP 21/5 4/1 62,/20

Z is (1) randomized and (2) has no effect on re-offence other than through the action taken.
i A categorical instrumental variable (IV) model with |Z| = |X| =3 and |Y| = 2.
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(2) Exclusion Restriction
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Existing literature

Bounds for binary IV When |Z| = 2, ATE is partially identified by the Manski—Robins
bound or the (narrower) Balke—Pearl bound depending on the assumption.
Generalized to | Z| > 2 by Richardson and Robins (2014).
A comprehensive discussion of the underlying assumptions and results is given in
Swanson et al. (2018).

Falsification Testing whether a given observed distribution is compatible with particular sets
of IV assumptions (Pearl, 1995; Bonet, 2001; Wang et al., 2017; Kédagni &
Mourifié, 2020; Bhadane et al., 2025).

Other related work Beresteanu et al. (2012), Russell (2021), and Luo and Wang (2017)
based on “random set theory".
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Existing Literature

LATE for binary IV Effect among compliers is point-identified (Imbens & Angrist, 1994), but
need monotonicity assumption (i.e., no defiers).
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Existing Literature

LATE for binary IV Effect among compliers is point-identified (Imbens & Angrist, 1994), but
need monotonicity assumption (i.e., no defiers).

e requires determining whether a subject would have been a complier had
they been in the experiment (Kennedy et al., 2020).
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Existing Literature

LATE for binary IV Effect among compliers is point-identified (Imbens & Angrist, 1994), but
need monotonicity assumption (i.e., no defiers).
e requires determining whether a subject would have been a complier had
they been in the experiment (Kennedy et al., 2020).
e e.g. requires judging that had a domestic violence incident happened during
the course of the study, the responding officer would have judged it
according to the assigned strategy, whatever that was.

13



Procrustean analysis: Pretending it is a binary IV?

e Z: action instructed
e X: action taken
e Y: no re-offence / re-offence in 6-month follow-up

X =Apv X = SEP

Z = ARrr / 0/0 1/0
Z = Apv / 69/15 3/3 N ]
Z = SEP / 4/1 62/20 e

(2) Exclusion Restriction
» Suppose we only want to contrast ADV vs SEP . Can we just drop the first column?

1= No, because that would be conditioning on X # ARR , making Z not independent of Y(x)

anymore.
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Procrustean analysis: Pretending it is a binary IV?

e Z: action instructed
e X: action taken
e Y: no re-offence / re-offence in 6-month follow-up

X =Apv X = SEP

Z = ARrr / 0/0 1/0
Z = Apv / 69/15 3/3 N ]
Z = SEP / 4/1 62/20 e

(2) Exclusion Restriction

» Suppose we only want to contrast ADV vs SEP . Can we just drop the first column?

1= No, because that would be conditioning on X # ARR , making Z not independent of Y(x)

anymore.

Our Goal » Characterization and partial identification of a generic categorical IV model.
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Categorical 1V



Consider a categorical IV model with
Z=[Q]=1{1,...,Q}, X=[K]l={1,...,K}, Y=[M={1,...,M}.

The model obeys the usual consistency assumption and
(1) independence/exogeneity condition, and
(2) exclusion restriction.

» Characterize the set of P(Y(x1),..., Y(xk)) that is compatible with P(X, Y | Z).

» Falsification test of whether a given observed distribution is compatible with the IV
assumptions.

» Partially identify ATEs such as E[Y(xx) — Y(xx)] or any linear functionals of
P(Y(x1),..., Y(xk)).

» Construct confidence intervals for ATEs such as E[Y(xx) — Y (xx )] or any linear
functionals of P(Y(x1),..., Y(xk)).
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What does a characterization mean? The case of binary X, Y

In an observational study with |Z| = 1, we have
0<%HE < P(X=0,Y =0)+P(X =1,Y =1)
0<%HU < P(X=0,Y =1)+P(X =1,Y = 0)
0<%NR<P(X=0,Y=0)+P(X=1Y=0)
0<%AR< P(X=0,Y =1)+P(X =1,Y = 1)
P(X=0,Y=1) <P{Y(0)=1}<1-P(X=0,Y=0)

P(X=1,Y=1) <P{Y(1)=1}<1-P(X=1,Y =0)

6 pairs of parallel planes

%HE: P(Y(0) =0,Y(1)=1); %HU: P(Y(0) =1, Y(1) =0);
%NR: P(Y(0) =0, Y(1) = 0); %AR: P(Y(0) =1, Y(1) = 1).
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What does a characterization mean? The case of binary X, Y

In an observational study with |Z| = 1, we have
0<%HE < P(X=0,Y =0)+P(X =1,Y =1)
0<%HU < P(X=0,Y =1)+P(X =1,Y = 0)
0<%NR<P(X=0,Y=0)+P(X=1Y=0)
0<%AR< P(X=0,Y =1)+P(X =1,Y = 1)
P(X=0,Y=1) <P{Y(0)=1}<1-P(X=0,Y=0)

P(X=1,Y=1) <P{Y(1)=1}<1-P(X=1,Y =0)

6 pairs of parallel planes

» Given the observed probabilities, what do | actually know about my counterfactual
probabilities?

%HE: P(Y(0) =0
%NR: P(Y(0) =0,
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Simplest IV Model M;

The simplest IV model M3 is defined by the following assumptions:

@® Consistency
Y =Y(X,Z)and X = X(Z)

® Individual-level exclusion

Y(xi,z) = Y(x;,2) forall z,Z € [Q], i € [K], and ¢ € [Q]

©® Random assignment

Z 1 (Y(x,2),X(2): xe[K],z<€[Q)])
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Simplest IV Model M;

The simplest IV model M3 is defined by the following assumptions:

@® Consistency
Y =Y(X,Z)and X = X(Z)

® Individual-level exclusion

Y(xi,z) = Y(x;,2) forall z,Z € [Q], i € [K], and ¢ € [Q]

©® Random assignment
Z 1 (Y(x,2),X(2): xe[K],z<€[Q)])
» Our paper also considers four other IV models, M>, ... . s, defined by weaker versions of
the Exclusion and Random assignment assumptions, to which our results also apply.

i These models may be of possible interest in testing causal quantum theories.
17



IV models M,,..., M5

Model Name Exclusion Independence
M; Randomization Individual-level Random assignment
Mo>  Joint Ind. & Indiv. Excl. Individual-level Joint independence
Mz Joint Ind. & Stoch. Excl.  Joint stochastic exclusion Joint independence
My SWIG Individual-level Single-world independence
Ms  Latent Model Latent exclusion Latent-variable exogeneity

= M C My C Mz, M; € My and My C Ms.

My

Mo M,

M3 Ms

18



Characterizing the IV model

Recall in our categorical 1V,

Z2=[Q=1{1,....Q}, X=[K]={1,....K}, Y=[M={1,....,M}.

Under any IV model M; (i = 1,...,5), the set of counterfactual distributions is
characterized by the following set of inequalities: for each z € [Q], we have

P’(Y(xl)ev(l), LY (xk) ev<K) ZP( —i7YeV(i)’Z:z),ze[Q],

where V(¥ is a non-empty subset of [M] for all k € [K] and a strict subset of [M] for at least one k.

19



Example inequality when |X| =2, |)| =3

Theorem 1 Under any IV model M; (i = 1,...,5), the set of counterfactual distributions is charac-

terized by the following set of inequalities: for each z € [Q], we have

K
P (Y(xl) eV, Y(xk) € V(K)) <Y P (X:i, y e v Z:z) ,z€[Ql,

i=

where V(¥ is a non-empty subset of [M] for all k € [K] and a strict subset of [M] for at least one k.

Taking V() = {1,2,3} and V@ = {1,2}, gives
2
P'(Y(x1) €V, Y(x) e VD) < Y P (X =iy ey
i=1

Z:z)7

which, upon subtracting from one on both sides, becomes
P'(Y(x)#3)<1-P(X=2,Y=3|Z=2z). (A)
Similarly, taking V() = {1,2,3} and V) = {2, 3}, gives

P(Y()#1)<1-P(X=2,Y=1|Z=2). (%) 20



Bipartite graph and compatible pairs

We can also represent each inequality graphically.

» Let us fix Z = z. Consider again |X| =2, |V| = 3.
= An edge is placed between every pair of (counterfactual, observed) values that are
compatible under the IV model.

counterfactual observed (given Z = z)
(Y(x1)=1,Y(x)=1) X(=2)=1Y(a)=1) < (X=1,Y=1)
(Y()=1,Y(e)=2) (X(2)=1,Y(x)=2) &= (X =1,Y =2)
(Y(x)=1,Y(x)=3)

(Y(x1)=2,Y(x)=1) (X(2)=1,Y(x1)=3) < (X =1,Y =3)
(Y(x1)=2,Y(x)=2)

X(2)=2,Y(x)=1 X=2 V=l
A (X(2)=2, V() =1) = ( )
(Y(xa)=3, Y(x)=1) (X(2)=2, Y(xa)=2) «= (X =2,Y =2)
(Y () =3, Y () =2) v oy
o)y —a) (X(2)=2, Y(xa)=3) «= (X =2,Y =3) i



Bipartite graph and compatible pairs

We can also represent each inequality graphically.

» Let us fix Z = z. Consider again |X| =2, |V| = 3.
1z An edge is placed between every pair of (counterfactual, observed) values that are
compatible under the IV model.

counterfactual < observed (given Z = z)
(Y(x1)=1,Y(x)=1) (X(2)=1,Y(x)=1) <= (X=1,Y=1)
(Y()=1,¥(e)=2) (X(2)=1,Y(x)=2) &= (X =1,Y =2)
(Y(x)=1,Y(x)=3)

(Y(a)=2,Y(x)=1) (X(2)=1,Y(x1)=3) < (X =1,Y =3)
(Y(x1)=2,Y(x)=2)

X(2)=2,Y(x)=1 X=2 V=l
s Y3 (X(2)=2, V() =1) <= ( )
(Y(x1)=3,Y(x)=1) (X(2)=2,Y(x)=2) < (X=2,Y =2)
(Y(x)=3,Y(x2)=2) v NV
(Y(a)=3. Y (o) =3) (X(2)=2,Y(x)=3) < (X=2,Y =3) "



Bipartite graph and compatible pairs

We can also represent each inequality graphically.

» Let us fix Z = z. Consider again |X| =2, |V| = 3.
1z An edge is placed between every pair of (counterfactual, observed) values that are
compatible under the IV model.

counterfactual = observed (given Z = z)
(Y(x1)=1,Y(x)=1) X(2)=L,Y(xa)=1) < (X=1,Y=1)
(Ya)=1, Y (e)=2) (X(2)=1,Y(x)=2) < (X=1,Y =2)
(Y(a)=1,Y(x)=3)

(Y(x)=2,Y(x)=1) (X(2)=1,Y(x1)=3) < (X=1,Y =3)
(Y(xa)=2,Y(x)=2)

X(2)=2,Y(x)=1 X=2 V=1l
A (X(2)=2, V) =1) = ( )
(Y(xa)=3, Y(x)=1) (X(2)=2, Y(xa)=2) «= (X =2,Y =2)
(Y () =3, Y () =2) v oy
o)y —a) (X(2)=2, Y(xa)=3) «= (X =2,Y =3) i



Example revisited

Our example: V) = {1,2,3} and V® = {1,2} gives the inequality
P'(Y(x) € {1,2,3}, Y(x) € {1,2) > P(X=1,Y €{1,2,3}| Z=2)+P (X =2,Y € {1,2}| Z = 2),
e, P(Y(o)#3)<1-P(X=2Y=3|Z=2z). ()

counterfactual observed (given Z = z)
(Y(x)=1,Y(x)=1 Y(x)=1) = [X=1,Y=1)
(V) =1, Vo) =2 Y(x)=2 X=1Y=2
(Y(x)=1,Y(x)=3 Vea)=2) = 8= 17 =2)
(Y(xa)=2,Y(x)=1 ,Y(x)=3) <= |(X=1,Y =3)
(Y(a)=2,Y(x)=2
(Y(x1)=2,Y(x2)=3 Y0e)=1) = |(X=2,Y =1)
(Y(a)=3,Y(x)=1 L Y(0)=2) <= |[(X =2,Y =2)
(Y(Xl):3, Y(Xz)—z
(Y(x1)=3, Y(x2)= Y(e)=3) <= (X=2,Y=3)

5 This shows the necessity of the bound. 2



Theorem 1: proof sketch

Theorem 1 Under any IV model M; (i = 1,...,5), the set of counterfactual distributions is charac-

terized by the following set of inequalities: for each z € [Q], we have

Z:z), z€ Q]

K
P (Y(xl) eV . Y(xk) € V(K)) <P (X:i, y ey

i=

where V(¥ is a non-empty subset of [M] for all k € [K] and a strict subset of [M] for at least one k.

Define o:P(Z,X,Y(x1),....,Y(xk)) — | P(Y(x2),...,Y(xk)), P(X,Y|2Z)

eM; counterfactual observed

Let 7 be the set of RHS pairs that obey the inequalities in Theorem 1.

1= Theorem 1 is equivalent to the claim that ¢(M;) =T, i=1,...,5.

23
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23



Theorem 1: proof sketch

Theorem 1 Under any IV model M; (i = 1,...,5), the set of counterfactual distributions is charac-

terized by the following set of inequalities: for each z € [Q], we have

Z:z), z€ Q]

K
P (Y(xl) eV . Y(xk) € V(K)) <P (X:i, y ey

i=

where V(¥ is a non-empty subset of [M] for all k € [K] and a strict subset of [M] for at least one k.

Define o:P(Z,X,Y(x1),....,Y(xk)) — | P(Y(x2),...,Y(xk)), P(X,Y|2Z)

eM; counterfactual observed

Let 7 be the set of RHS pairs that obey the inequalities in Theorem 1.
1= Theorem 1 is equivalent to the claim that ¢(M;) =T, i=1,...,5.

o $(M;) C T: Relatively easy to show.

e »(M;) O T: Much harder. We show this using a finite-space version of Strassen’s theorem

(Koperberg, 2024; Strassen, 1965). » More user-friendly than the “random set theory”.
23



Example continued

Recall that we obtained two inequalities
P (Y(x)#3)<1-P(X=2,Y=3|Z=2z), (A)
P(Y(x)#1)<1-PX=2,Y=1|Z=2z). (%)
= (A) + (%) leads to
P(Y(x)=2)<1-PX=2Y=1|Z=2)-PX=2,Y=3|Z=2z) (W),

which, however, is another inequality corresponding to V() = {1,2,3} and V() = {2} in
Theorem 1.

24



Example continued

Recall that we obtained two inequalities
P (Y(x)#3)<1-P(X=2,Y=3|Z=2z), (A)
P(Y(x)#1)<1-PX=2,Y=1|Z=2z). (%)
= (A) + (%) leads to
P(Y(x)=2)<1-PX=2Y=1|Z=2)-PX=2,Y=3|Z=2z) (W),

which, however, is another inequality corresponding to V() = {1,2,3} and V() = {2} in
Theorem 1.

= The set of inequalities in Theorem 1 can be redundant.

24



A non-redundant set of inequalities

Given a set of inequalities, an individual inequality can be redundant if it is implied by other

inequalities in the set.

= By characterizing the extreme points (and hence all the facets of the polytope), we further
arrive at a set of non-redundant inequalities.

Redundant inequalities

25



A non-redundant set of inequalities

Recall that Theorem 1 gives inequalities
P (Y(xl) eV, Y(x) € v(K)) Z P (

where () # V) is a subset of [M] for all k € [K] and a strict subset of [M] for at least one k.

Z:z), z€[q],

Theorem 2 The inequalities above can be reduced to a subset that only consists of inequalities
that satisfy either
© for at least two values k # k*, we have V() £ [M] and V(K') £ [M], or

@ there exist k* and m € [M] such that V(<) = [M] \ {m} and V() = [M] for every
k # k*.

This set of inequalities are non-redundant and characterize the IV model.

5 # inequalities =0(Q 2"") < O(Q 2MK) Artstein’s inequalities in random set theory.
26



Falsification of the IV model

Y%

1 Empty intersection of the |Z| polytopes defining the joint counterfactual probability

distribution given each instrument arm Z = z implies falsification of the categorical IV model.
27



Statistical inference



Inference targets

@ Construct confidence intervals! for ATEs
T =EY(X=k)=Y(X=K)], 1<k<k <K

that contrast all pairs of treatments.

ww Every ATE 7y 4 is a linear functional of the counterfactual distribution P(Y(x1),..., Y(xk)).
By projecting the polytope we characterized, we can get a tight lower and upper bound.

But this ignores the sampling variability in I3(X, Y | Z).
® Falsification of IV model.

i |f the data strongly suggests that the observed distribution P(X, Y | Z) does not admit
any underlying categorical IV, we should be able to raise an alarm.

LCls that cover the population-level identified intervals with prescribed coverage.

28



Multinomial LRT

Consider a multinomial experiment over N > 2 categories
(Xl, 000 7)(/\/) ~ Mult(n; (pl7 000 pN)),
where (py,...,py) € AN7L Let (py,...,pn) == (X1,..., Xn)/n.

1 The Wilks' theorem states that the likelihood ratio test (LRT) statistic

k PN
2n DL (Bllp) =20y By logg ~a X1, n— oo

i=1 !

= Can we use this reliably for inference?

29



Wilks in the wild

1z Simulate the null distribution of the LRT statistic under two ‘typical’ p's:
M “sparse” p ~ Dir(as = --- = ay =0.5), M“dense” p ~ Dir(a; =---=ay =1).
We keep n/N = 10 and compare these to the Wilks' chi-squared under growing N = KMQ.

N=KMQ=10, n=100

0.1004

0.0754

density

0.0504

0.0254

0.0004

LRT
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Wilks in the wild

1z Simulate the null distribution of the LRT statistic under two ‘typical’ p's:
M “sparse” p ~ Dir(ag =+ = ay =0.5), M“dense” p ~ Dir(a; =--- = ay =1).

We keep n/N = 10 and compare these to the Wilks' chi-squared under growing N = KMQ.

N=KMQ=100, n=1000

0.03

0.02

density

0.01

0.00

LRT

30



Wilks in the wild

1z Simulate the null distribution of the LRT statistic under two ‘typical’ p's:
M “sparse” p ~ Dir(as = --- = ay =0.5), M“dense” p ~ Dir(a; =---=ay =1).
We keep n/N = 10 and compare these to the Wilks' chi-squared under growing N = KMQ.

N=KMQ=1000, n=10000

0.0100
0.0075

0.0050

density

0.0025

0.0000
900 1000 1100 1200
LRT

= np; > 5 as a rule of thumb for CLT?
= Even ensuring solid coverage for p under N = 2 is non-trivial (Clopper & Pearson, 1934; Brown

et al., 2001).
30



A finite-sample Chernoff bound

= For conducting inference, we use a finite-sample Chernoff bound (Guo & Richardson, 2021)

P (nDki(pllp) > t) < min exp(—=At)Gn (),
A€[0,1]

where Gy, is an explicit upper bound on the moment generating function of the LRT that only
depends on the number of categories N and the sample size n.

31



A finite-sample Chernoff bound

= For conducting inference, we use a finite-sample Chernoff bound (Guo & Richardson, 2021)

P (nDki(pllp) > t) < min exp(—=At)Gn (),
A€[0,1]

where Gy, is an explicit upper bound on the moment generating function of the LRT that only
depends on the number of categories N and the sample size n.

Finite-sample confidence region. With probability at least 1 — «, it holds that

Q
Z nzDKL (ﬁz”pz) S toz,
z=1
where for each arm z € [Q], n, is its sample size and p, = P(X,Y | Z = z) € AKM~1,

1/2

= 3 convex confidence region for (p, : z € [Q]) that shrinks at n™"/* rate.

The critical value t, is determined from the Chernoff bound for () independent multinomial trials

Q

Q
P (Z n: D (B p2) > r) < min exp(=A0) [T G, (V).
z=1 ’

z=1 31




Inference through a convex program

1= Given a collection linear functionals fi,. .., f; (e.g, ATEs), we can construct their confidence

intervals [h, u1],...,[ls, us] by solving a convex program.

li=minfi(p"), uj =maxfi(p)

» Programming variables: st. —Hp,+Hp <0, z=1,...,Q,(Theorem 2)
Q

e > neDa(peles) < ta.

P = P(Y(a),..., Y(xx)) € RM"

p.e AL 2=1...Q,

p e AM L

Theorem 4 Under any IV model M; (i =1,...,5), with probability at least 1 — « it holds that
felh,wl],....f5€lly,uy] with —oco < [; < uj < 400 simultaneously. ¥ non-asymptotic

An alarm is raised when [; = +o00, uj = —00, which indicates that the IV model is falsified by

data. The probability of a false alarm is below «.

32



Data analysis



R = re-offence in 6-month follow-up [ Plugin  [J95% ClI
-0.5 0.0 0.5

“PRIAW) _PRIAT

PR1Sep) ~PRIAD

All data
(our method)

X=ARrR X=ADV X =SEP
Z = ARR 81/10 0/0 1/0
Z = Apv 15/3 69/15 3/3
Z = Skp 21/5 4/1 62/20

-0.5 0.0 0.5 1.0

= Qur method: Simultaneous coverage.
Number of IV inequalities = 78 < 762 Artstein’s inequalities.

33



Revisiting Minneapolis Domestic Violence Experiment

R = re-offence in 6-month follow-up [ Plugin  [J95% ClI

-0.5 0.0 0.5 1.0
1 1 1 L 1 1 1 1
P(RIAdv) - P(RIAm) P(R1Sep) - P(RIAm) X=ARR X =ADpv X =SEP
! !
All data Z = ARR 81/10 0/0 1/0
(our method) Z = Apv 15/3 69/15 3/3
Z = Skp 21/5 4/1 62/20
T T
T
erse| [T ] (T ]
: : X=ARR X=ADV X =SEP
0 0 7
Delete Z=Arr | | [ | | | | ' | | Z = ARR 81/10 / /
! ' Z = Apv / 69/15 /
. ! Z = Skp / Vi 62/20
|
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= Qur method: Simultaneous coverage.
Number of IV inequalities = 78 < 762 Artstein’s inequalities.

= Using more instrument arms can improve the efficiency of the results.
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All data
(our method)

Delete Z=Sep

Delete Z=Arr

Delete Z=Adv

Procrustean Binary IV

R = re-offence in 6-month follow-up

[ Plugin

[Jo95% cl

-0.5 0.0 0.5

1.0

“PRIAW) _PRIAT

PR1Sep) —PRIAD

-0.5 0.0

= Qur method: Simultaneous coverage.
Number of IV inequalities = 78 < 762 Artstein’s inequalities.

= Using more instrument arms can improve the efficiency of the results.

15 Procrustean binary IV analysis is biased and unnecessary.

X=ARrR X=ADV X =SEP
Z = ARR 81/10 0/0 1/0
Z = Apv 15/3 69/15 3/3
Z = Skp 21/5 4/1 62/20
X=ARR X =ADvVv X =SEP
Z = ARR 81/10 / /
Z = Apv / 69/15 /
Z = SEP /i / 62/20
X =Apv X =SEpP
Z = ARR / 0/0 1/0
Z = Apv / 69/15 3/3
Z = Skp / 4/1 62/20
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Exclusion restriction, versions of

(V1) Individual-level Exclusion
Y(xi,z) = Y(xi,z) forall z,Z € [Q], i € [K], and q € [Q]

(V2) Joint Stochastic Exclusion

P(Y(x1,2) = y',. . Y (3, 2) = y") = P(Y(x1,2) = ¥, ., Y (3, 2) = ¥)
forall z,z € [Q] and y',...,y" € [M]

(V3) Latent Exclusion

P(Y(x,z)=y|U=u)=P(Y(x,2) =y | U=u) forall z,z € [Q],
x € [K] and y € [M] and latent state wu.



Independence assumption, versions of

(V1) Random assignment
Z 1l (Y(x,2),X(z): x€[K],z € [Q])

(V2) Joint independence
Z 1 (Y(x,z): x€[K],z€[Q])

(V3) Single-world independence
Z 1 X(z), Y(x,z), forall z€[Q], x € [K]
(V4) Latent-variable exogeneity There exists U such that U L Z, and

Y(x,z) IL X, Z | U, forall z € [Q], x € [K]
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