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Highlights

• We consider estimating a total causal effect from observational

data.

• We assume

• Linearity: data is generated from a linear structural equation model.

• Causal sufficiency: no unobserved confounding, no selection bias.

• The causal DAG is known up to a Markov equivalence class with

additional background knowledge.

• We present a least squares estimator that is

• Complete: applicable whenever the effect is identified,

• Efficient: relative to a large class of estimators,

which is the first of its kind in the literature ...
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Causal DAG, linear SEM

A Z W Y

T

S

Suppose D is the underlying causal DAG. D is unknown.

Suppose data is generated by a linear structural equation model (SEM)

Xv =
∑

u:u→v

γuvXu + εu, E εu = 0, 0 < var εu <∞.

Under causal sufficiency, the errors are mutually independent (no i ↔ j

in the path diagram).
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Total effect

Suppose we want to estimate the total (causal) effect of A on Y .

A Z W Y

T

S

+ The total effect τAY is defined as the slope of

xa 7→ E[XY |do(XA = xa)], given by a sum-product of Wright (1934):

τAY =
∂

∂xa
E[XY |do(XA = xa)] = (γAZγZW + γAW )γWY .

Here we consider point intervention (|A| = 1) for simplicity. For a joint

intervention (|A| > 1), total effect can be similarly defined.
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Markov equivalence, CPDAG

Without making further assumptions, the causal DAG D can only be

identified from observed distribution up to a Markov equivalence class.

The Markov equivalence class of D is uniquely represented by a

CPDAG/essential graph C.

A Z W Y

T

S

+ Knowing only C is often insufficient to identify the total effect.
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Identifiability from a partially directed graph

Theorem (Perković, 2020)

The total effect τAY is identified from a maximally oriented partially

directed acyclic graph G if and only if there is no proper, possibly

causal path from A to Y in G that starts with an undirected edge.

A Z W Y

T

S

+ In the unidentified case, see also the IDA algorithms (Maathuis,

Kalisch, and Bühlmann, 2009; Nandy, Maathuis, and Richardson, 2017)

that enumerates possible total effects.
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Background knowledge, MPDAG

However, often we have additional knowledge that can help towards

identification.

+ Suppose we know that S temporally preceeds A.

The green orientations are further implied by the rules of Meek (1995).

+ In this example, τAY is identified from the resulting maximally

oriented partially directed acyclic graph (MPDAG) G.
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Adjustment estimator

Our task is to estimate τAY from n iid observational sample generated by

a linear SEM associated with causal DAG D, given that

D ∈ [G] for MPDAG G, τAY is identifiable from G.

A Z W Y

T

S

MPDAG G

+ Adjustment estimator: τ̂ adj
AY is the least squares coefficient of A from

Y ∼ A + S .
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Adjustment estimator

Adjustment Y ∼ A + S can be justified by looking at the elements of [G].

A Z W Y

T

S

A Z W Y

T

S

A Z W Y

T

S

Adjustment estimator

• may not exist when |A| > 1.

• may not be unique.

• The most efficient adjustment estimator is recently characterized by

Henckel, Perković, and Maathuis (2019) and Witte et al. (2020).

• not efficient.
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Our proposal: G-regression estimator

We achieve efficient estimation by exploiting the “additional” conditional

independences in G in this over-identified setting.

A Z W Y

T

S

+ G-regression estimator

τ̂GAY = λ̂AW λ̂WY ,

where λ̂AW , λ̂WY are taken from W ∼ A and Y ∼W + S respectively.
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Our proposal: G-regression estimator

adjustment G−regression

1.
5

2.
0

2.
5

n = 100, t5 errors.
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G-regression estimator

Define the set of vertices D := An(Y ,GV\A). G-regression estimator is

τ̂GAY := Λ̂GA,D

[
(I − Λ̂GD,D)−1

]
D,Y

,

where Λ̂G is a |V | × |V | matrix consisting of least squares coefficients for

each “bucket”.

Theorem

G-regression estimator is

1. complete,

2. the most efficient estimator among all consistent, regular

estimators that only depend on the first two moments of data.

I How to derive this estimator?

1. Find the MLE under Gaussian errors.

2. Show that this MLE is “efficient” even when errors are non-Gaussian.
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Buckets, reparametrization and Gaussian MLE

A Z W Y

T

S

Let “buckets” be the maximal connected components of the undirected

part of G.

Further, buckets can be topologically ordered by the directed part of G:

B1 = {S}, B2 = {A}, B3 = {Z ,W ,T}, B4 = {Y }.

Lemma: Restrictive property

For each bucket Bi , vertices in Bi have the same set of external parents,

denoted as Pa(Bi ).
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Buckets, reparametrization and Gaussian MLE

The SEM according to D can be reparametrized as a block-recursive

form according to the buckets:

XB1 = εB1 , XBk
= Λᵀ

Pa(Bk ),Bk
XPa(Bk ) + εBk

, k = 2, . . . ,K .

• Λ: |V | × |V | upper-triangular matrix corresponding to directed edges

between buckets.

• εBk
: errors associated with bucket Bk , independent across buckets.

I Two nice things happen under this reparametrization:

1. With D = An(Y ,GV\A), τAY can be identified as

τAY = ΛA,D

[
(I − ΛD,D)−1

]
D,Y

.

+ The bucket-wise error distribution is nuisance.

2. Under Gaussian errors, the MLE for each ΛPa(Bk ),Bk
is just the least

squares coefficients of Bk ∼ Pa(Bk). + G-regression.
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Buckets, reparametrization and Gaussian MLE

The second property is a special case of “seemingly unrelated regression”

due to the restrictive property.

A Z W Y

T

S

(XZ ,XW ,XT ) = (λAZ , λAW , λAT )XA + εB3 ,

εB3 ∼ N (0,Ω3), (Ω3)ZT ·W = 0.

+ See also Anderson and Olkin (1985, §5) and Amemiya (1985, §6.4) for

this phenomenon.
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Efficiency theory

Let Σn be the sample covariance. Consider the class of estimators

T =
{
τ̂(Σn) : R|V |×|V |PD → R|A| :

τ̂(Σn) is a consistent, asymptotically linear estimator of τAY
}
.

The efficiency theory entails two parts.

+ Establish an efficiency bound on T .

I The bound is derived from the gradient condition on T (as in

standard semiparametric efficiency theory) and a diffeomorphism

R|V |×|V |PD ←→ ((ΛPa(Bk ,Ḡ),Bk
,Ωk) : k = 1, . . . ,K ) associated with Ḡ,

where Ḡ is the saturated version of G.

+ This generalizes a result from Drton (2018).

+ Verifying that τ̂GAY achieves this bound.
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where Ḡ is the saturated version of G.

+ This generalizes a result from Drton (2018).

+ Verifying that τ̂GAY achieves this bound.

16



Efficiency theory

Let Σn be the sample covariance. Consider the class of estimators

T =
{
τ̂(Σn) : R|V |×|V |PD → R|A| :

τ̂(Σn) is a consistent, asymptotically linear estimator of τAY
}
.

The efficiency theory entails two parts.

+ Establish an efficiency bound on T .

I The bound is derived from the gradient condition on T (as in

standard semiparametric efficiency theory) and a diffeomorphism

R|V |×|V |PD ←→ ((ΛPa(Bk ,Ḡ),Bk
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Efficiency theory

A Z W Y

T

S

Saturated Ḡ according to buckets

B1 = {S}, B2 = {A}, B3 = {Z ,W ,T}, B4 = {Y }.

17



Proof sketch

1. Suppose |A| = 1. Rewrite τ̂ ∈ T as

τ̂(Σn) = τ̂
(

(Λ̂k)k,G , (Λ̂k)k,Gc , (Ω̂k)k
)
,

where (Λ̂k)k,Gc = (Λ̂k)k,Ḡ\G are introduced dashed edges.

2. Consistency of τ̂ implies

∂τ̂

∂Λ̂k,G
=

∂τG

∂Λ̂k,G
(k = 2, . . . ,K),

∂τ̂

∂Ω̂k

= 0 (k = 1, . . . ,K),

but ∂τ̂

∂Λ̂k,Gc
is free.

3. Compute acov of
(

(Λ̂k,G)k , (Λ̂k,Gc )k
)

via asymptotic linear expansions.

4. By the delta method, an upper bound can be derived from quadratic form

avar(τ̂) =

 ∂τ̂

∂(Λ̂k,G )k
∂τ̂

∂(Λ̂k,Gc )k

ᵀ

acov
(

(Λ̂k,G)k , (Λ̂k,Gc )k
) ∂τ̂

∂(Λ̂k,G )k
∂τ̂

∂(Λ̂k,Gc )k


≤ sup
∂τ̂/∂(Λ̂k,Gc )k

 ∂τ̂

∂(Λ̂k,G )k
∂τ̂

∂(Λ̂k,Gc )k

ᵀ

acov
(

(Λ̂k,G)k , (Λ̂k,Gc )k
) ∂τ̂

∂(Λ̂k,G )k
∂τ̂

∂(Λ̂k,Gc )k

 .
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Simulation results

An instance is simulated by the following steps.

1. Draw D from a random graph ensemble.

2. Take G = CPDAG(D).

3. Simulate data from a linear SEM with random coefficients and a

random error type (normal, t, logistic, uniform).

4. Pick (A,Y ) such that τAY is identified from G.

5. Compute squared error ‖τAY − τ̂AY ‖2.

+ We compare to the following estimators in the literature:

• adj.O: optimal adjustment estimator (Henckel, Perković, and

Maathuis, 2019),

• IDA.M: joint-IDA estimator based on modifying Cholesky

decompositions (Nandy, Maathuis, and Richardson, 2017),

• IDA.R: joint-IDA estimator based on recursive regressions (Nandy,

Maathuis, and Richardson, 2017).
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Maathuis, 2019),

• IDA.M: joint-IDA estimator based on modifying Cholesky

decompositions (Nandy, Maathuis, and Richardson, 2017),

• IDA.R: joint-IDA estimator based on recursive regressions (Nandy,

Maathuis, and Richardson, 2017).

19



Simulation results

An instance is simulated by the following steps.

1. Draw D from a random graph ensemble.

2. Take G = CPDAG(D).

3. Simulate data from a linear SEM with random coefficients and a

random error type (normal, t, logistic, uniform).

4. Pick (A,Y ) such that τAY is identified from G.

5. Compute squared error ‖τAY − τ̂AY ‖2.

+ We compare to the following estimators in the literature:

• adj.O: optimal adjustment estimator (Henckel, Perković, and
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Simulation results

Table 1: Percentage of identified instances not estimable using contending

estimators. All instances are estimable with G-regression.

Estimator |A| |V | = 20 |V | = 50 |V | = 100

adj.O

1 0% 0% 0%

2 17% 10% 5%

3 30% 18% 15%

4 36% 29% 22%

IDA.M

1 29% 32% 32%

2 47% 51% 50%

3 61% 59% 63%

4 72% 69% 71%

IDA.R

1 29% 32% 32%

2 47% 51% 50%

3 61% 59% 63%

4 72% 69% 71% 20



Simulation results

Table 2: Geometric average of squared errors relative to G-regression,

computed from estimable instances.

|V | = 20 |V | = 50 |V | = 100

|A| n = 100 n = 1000 n = 100 n = 1000 n = 100 n = 1000

adj.O

1 1.3 1.3 1.4 1.3 1.5 1.5

2 3.4 4.2 4.7 4.9 4.2 4.5

3 6.3 5.9 7.4 7.2 7.8 8.0

4 9.3 9.3 12 14 12 12

IDA.M

1 20 19 61 48 103 108

2 62 65 220 182 293 356

3 93 119 354 396 749 771

4 154 222 533 895 1188 1604

IDA.R

1 20 19 61 48 103 108

2 33 38 121 113 176 199

3 30 39 171 135 342 312

4 48 50 187 214 405 432
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Final remarks

• Details: arxiv.org/abs/2008.03481

• R package eff2: github.com/richardkwo/eff2

• Why restricting to the first two moments?

This is a large class of estimators, containing all the estimators we

know from the literature ...

Also, this is a tradeoff between theory and practice. The problem is

a generalized, multivariate location-shift regression model (Bickel

et al., 1993; Tsiatis, 2006). Theoretically, a semiparametric efficient

estimator can be constructed by estimating the error score and then

solving estimating equations. But the resulting estimator seems

unstable for practical purposes (Tsiatis, 2006).

• Beyond linear SEMs?

It worth considering generalization along the lines of Rotnitzky and

Smucler (2019).
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Meek’s rules

B

A

C

R1

⇒

B

A

C A

B

C

R2

⇒

A

B

C

D C

A B

R3

⇒
D C

A B

D A

C B

R4

⇒
D A

C B

The orientation rules from Meek (1995).
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