Efficient Least Squares for Estimating Total Causal Effects

Richard Guo, Emilija Perković

Pacific Causal Inference Conference, 2020

Department of Statistics, University of Washington, Seattle

Highlights

• We consider estimating a total causal effect from observational data.

- We consider estimating a total causal effect from **observational data**.
- We assume

Highlights

- We consider estimating a total causal effect from observational data.
- We assume
 - Linearity: data is generated from a linear structural equation model.

Highlights

- We consider estimating a total causal effect from observational data.
- We assume
 - Linearity: data is generated from a linear structural equation model.
 - Causal sufficiency: no unobserved confounding, no selection bias.

- We consider estimating a total causal effect from observational data.
- We assume
 - Linearity: data is generated from a linear structural equation model.
 - Causal sufficiency: no unobserved confounding, no selection bias.
- The causal DAG is known up to a Markov equivalence class with additional background knowledge.

- We consider estimating a total causal effect from observational data.
- We assume
 - Linearity: data is generated from a linear structural equation model.
 - Causal sufficiency: no unobserved confounding, no selection bias.
- The causal DAG is known up to a Markov equivalence class with additional background knowledge.
- We present a least squares estimator that is

- We consider estimating a total causal effect from observational data.
- We assume
 - Linearity: data is generated from a linear structural equation model.
 - Causal sufficiency: no unobserved confounding, no selection bias.
- The causal DAG is known up to a Markov equivalence class with additional background knowledge.
- We present a least squares estimator that is
 - Complete: applicable whenever the effect is identified,

- We consider estimating a total causal effect from observational data.
- We assume
 - Linearity: data is generated from a linear structural equation model.
 - Causal sufficiency: no unobserved confounding, no selection bias.
- The causal DAG is known up to a Markov equivalence class with additional background knowledge.
- We present a least squares estimator that is
 - Complete: applicable whenever the effect is identified,
 - Efficient: relative to a large class of estimators,

which is the first of its kind in the literature ...

Suppose \mathcal{D} is the underlying causal DAG. \mathcal{D} is **unknown**.

Suppose \mathcal{D} is the underlying causal DAG. \mathcal{D} is **unknown**.

Suppose data is generated by a linear structural equation model (SEM)

$$X_{\mathsf{v}} = \sum_{u: u o \mathsf{v}} \gamma_{u\mathsf{v}} X_u + \epsilon_u, \quad \mathbb{E} \, \epsilon_u = \mathsf{0}, \quad \mathsf{0} < \mathsf{var} \, \epsilon_u < \infty.$$

Suppose \mathcal{D} is the underlying causal DAG. \mathcal{D} is **unknown**.

Suppose data is generated by a linear structural equation model (SEM)

$$X_{\mathsf{v}} = \sum_{u:u o \mathsf{v}} \gamma_{u\mathsf{v}} X_u + \epsilon_u, \quad \mathbb{E} \, \epsilon_u = \mathsf{0}, \quad \mathsf{0} < \mathsf{var} \, \epsilon_u < \infty$$

Under causal sufficiency, the errors are **mutually independent** (no $i \leftrightarrow j$ in the path diagram).

The total effect τ_{AY} is defined as the slope of $x_a \mapsto \mathbb{E}[X_Y | do(X_A = x_a)]$, given by a sum-product of Wright (1934): $\tau_{AY} = \frac{\partial}{\partial x_a} \mathbb{E}[X_Y | do(X_A = x_a)] = (\gamma_{AZ} \gamma_{ZW} + \gamma_{AW}) \gamma_{WY}.$

The total effect τ_{AY} is defined as the slope of $x_a \mapsto \mathbb{E}[X_Y | do(X_A = x_a)]$, given by a sum-product of Wright (1934): $\tau_{AY} = \frac{\partial}{\partial x_a} \mathbb{E}[X_Y | do(X_A = x_a)] = (\gamma_{AZ} \gamma_{ZW} + \gamma_{AW}) \gamma_{WY}.$

Here we consider point intervention (|A| = 1) for simplicity. For a joint intervention (|A| > 1), total effect can be similarly defined.

Without making further assumptions, the causal DAG \mathcal{D} can only be identified from observed distribution up to a Markov equivalence class.

W

Without making further assumptions, the causal DAG \mathcal{D} can only be identified from observed distribution up to a Markov equivalence class.

The Markov equivalence class of ${\cal D}$ is uniquely represented by a CPDAG/essential graph ${\cal C}.$

W

Without making further assumptions, the causal DAG \mathcal{D} can only be identified from observed distribution up to a Markov equivalence class.

The Markov equivalence class of ${\cal D}$ is uniquely represented by a CPDAG/essential graph ${\cal C}.$

 ${\tt I}{\tt S}$ Knowing only ${\mathcal C}$ is often **insufficient** to identify the total effect.

Theorem (Perković, 2020)

The total effect τ_{AY} is identified from a maximally oriented partially directed acyclic graph \mathcal{G} if and only if there is no proper, possibly causal path from A to Y in \mathcal{G} that starts with an undirected edge.

W

Theorem (Perković, 2020)

The total effect τ_{AY} is identified from a maximally oriented partially directed acyclic graph \mathcal{G} if and only if there is no proper, possibly causal path from A to Y in \mathcal{G} that starts with an undirected edge.

W

Theorem (Perković, 2020)

The total effect τ_{AY} is identified from a maximally oriented partially directed acyclic graph \mathcal{G} if and only if there is no proper, possibly causal path from A to Y in \mathcal{G} that starts with an undirected edge.

In the unidentified case, see also the IDA algorithms (Maathuis, Kalisch, and Bühlmann, 2009; Nandy, Maathuis, and Richardson, 2017) that enumerates possible total effects.

However, often we have additional knowledge that can help towards identification. $% \left({{{\left[{{{\left[{{{\left[{{{c}} \right]}} \right]}_{t}}} \right]}_{t}}}} \right)$

Suppose we know that *S* temporally preceeds *A*.

Suppose we know that *S* temporally preceeds *A*.

Suppose we know that *S* temporally preceeds *A*.

Suppose we know that *S* temporally preceeds *A*.

The green orientations are further implied by the rules of Meek (1995).

Suppose we know that *S* temporally preceeds *A*.

The green orientations are further **implied** by the rules of Meek (1995). The green orientations are further **implied** by the rules of Meek (1995). The green orientation of the resulting maximally oriented partially directed acyclic graph (MPDAG) \mathcal{G} .

W

Our task is to estimate τ_{AY} from *n* iid observational sample generated by a linear SEM associated with causal DAG D, given that

 $\mathcal{D} \in [\mathcal{G}] \text{ for MPDAG } \mathcal{G}, \quad \tau_{AY} \text{ is identifiable from } \mathcal{G}.$

Our task is to estimate τ_{AY} from *n* iid observational sample generated by a linear SEM associated with causal DAG D, given that

 $\mathcal{D} \in [\mathcal{G}]$ for MPDAG \mathcal{G} , τ_{AY} is identifiable from \mathcal{G} .

 $\mathsf{MPDAG}\ \mathcal{G}$

Adjustment estimator: $\hat{\tau}_{AY}^{adj}$ is the least squares coefficient of A from $Y \sim A + S$.

Adjustment $Y \sim A + S$ can be justified by looking at the elements of [G].

Adjustment estimator

Adjustment $Y \sim A + S$ can be justified by looking at the elements of [G].

Adjustment estimator

Adjustment $Y \sim A + S$ can be justified by looking at the elements of [G].

Adjustment estimator

Adjustment $Y \sim A + S$ can be justified by looking at the elements of [G].

Adjustment estimator

• may not exist when |A| > 1.

Adjustment $Y \sim A + S$ can be justified by looking at the elements of [G].

Adjustment estimator

- may not exist when |A| > 1.
- may not be unique.

Adjustment $Y \sim A + S$ can be justified by looking at the elements of [G].

Adjustment estimator

- may not exist when |A| > 1.
- may not be unique.
 - The most efficient adjustment estimator is recently characterized by Henckel, Perković, and Maathuis (2019) and Witte et al. (2020).

Adjustment $Y \sim A + S$ can be justified by looking at the elements of [G].

Adjustment estimator

- may not exist when |A| > 1.
- may not be unique.
 - The most efficient adjustment estimator is recently characterized by Henckel, Perković, and Maathuis (2019) and Witte et al. (2020).
- not efficient.

W

We achieve efficient estimation by exploiting the "additional" conditional independences in ${\cal G}$ in this over-identified setting.

W

We achieve efficient estimation by exploiting the "additional" conditional independences in ${\cal G}$ in this over-identified setting.

ISS G-regression estimator

$$\hat{\tau}_{AY}^{\mathcal{G}} = \hat{\lambda}_{AW} \hat{\lambda}_{WY},$$

where $\hat{\lambda}_{AW}$, $\hat{\lambda}_{WY}$ are taken from $W \sim A$ and $Y \sim W + S$ respectively.

Our proposal: *G*-regression estimator

n = 100, t_5 errors.

$\mathcal{G}\text{-}regression$ estimator

Define the set of vertices $D := An(Y, \mathcal{G}_{V \setminus A})$. \mathcal{G} -regression estimator is

$$\hat{\tau}_{AY}^{\mathcal{G}} := \hat{\Lambda}_{A,D}^{\mathcal{G}} \left[(I - \hat{\Lambda}_{D,D}^{\mathcal{G}})^{-1} \right]_{D,Y},$$

where $\hat{\Lambda}^{\cal G}$ is a $|V|\times |V|$ matrix consisting of least squares coefficients for each "bucket".

$\mathcal{G}\text{-}regression$ estimator

Define the set of vertices $D := An(Y, \mathcal{G}_{V \setminus A})$. \mathcal{G} -regression estimator is

$$\hat{\tau}_{AY}^{\mathcal{G}} := \hat{\Lambda}_{A,D}^{\mathcal{G}} \left[(I - \hat{\Lambda}_{D,D}^{\mathcal{G}})^{-1} \right]_{D,Y},$$

where $\hat{\Lambda}^{\cal G}$ is a $|V|\times |V|$ matrix consisting of least squares coefficients for each "bucket".

Theorem

 \mathcal{G} -regression estimator is

$\mathcal{G}\text{-}regression$ estimator

Define the set of vertices $D := An(Y, \mathcal{G}_{V \setminus A})$. \mathcal{G} -regression estimator is

$$\hat{\tau}_{AY}^{\mathcal{G}} := \hat{\Lambda}_{A,D}^{\mathcal{G}} \left[(I - \hat{\Lambda}_{D,D}^{\mathcal{G}})^{-1} \right]_{D,Y},$$

where $\hat{\Lambda}^{\cal G}$ is a $|V|\times |V|$ matrix consisting of least squares coefficients for each "bucket".

Theorem

 \mathcal{G} -regression estimator is

1. complete,

Define the set of vertices $D := An(Y, \mathcal{G}_{V \setminus A})$. *G*-regression estimator is

$$\hat{\tau}^{\mathcal{G}}_{AY} := \hat{\Lambda}^{\mathcal{G}}_{A,D} \left[(I - \hat{\Lambda}^{\mathcal{G}}_{D,D})^{-1} \right]_{D,Y},$$

where $\hat{\Lambda}^{\cal G}$ is a $|V|\times |V|$ matrix consisting of least squares coefficients for each "bucket".

Theorem

 \mathcal{G} -regression estimator is

- 1. complete,
- 2. the **most efficient** estimator among all consistent, regular estimators that only depend on the **first two moments** of data.

Define the set of vertices $D := An(Y, \mathcal{G}_{V \setminus A})$. \mathcal{G} -regression estimator is

$$\hat{\tau}^{\mathcal{G}}_{AY} := \hat{\Lambda}^{\mathcal{G}}_{A,D} \left[(I - \hat{\Lambda}^{\mathcal{G}}_{D,D})^{-1} \right]_{D,Y},$$

where $\hat{\Lambda}^{\cal G}$ is a $|V|\times |V|$ matrix consisting of least squares coefficients for each "bucket".

Theorem

 \mathcal{G} -regression estimator is

1. complete,

2. the **most efficient** estimator among all consistent, regular estimators that only depend on the **first two moments** of data.

Define the set of vertices $D := An(Y, \mathcal{G}_{V \setminus A})$. \mathcal{G} -regression estimator is

$$\hat{\tau}^{\mathcal{G}}_{AY} := \hat{\Lambda}^{\mathcal{G}}_{A,D} \left[(I - \hat{\Lambda}^{\mathcal{G}}_{D,D})^{-1} \right]_{D,Y},$$

where $\hat{\Lambda}^{\cal G}$ is a $|V|\times |V|$ matrix consisting of least squares coefficients for each "bucket".

Theorem

 \mathcal{G} -regression estimator is

1. complete,

2. the **most efficient** estimator among all consistent, regular estimators that only depend on the **first two moments** of data.

▶ How to derive this estimator?

1. Find the MLE under Gaussian errors.

Define the set of vertices $D := An(Y, \mathcal{G}_{V \setminus A})$. *G*-regression estimator is

$$\hat{\tau}_{AY}^{\mathcal{G}} := \hat{\Lambda}_{A,D}^{\mathcal{G}} \left[(I - \hat{\Lambda}_{D,D}^{\mathcal{G}})^{-1} \right]_{D,Y},$$

where $\hat{\Lambda}^{\cal G}$ is a $|V|\times |V|$ matrix consisting of least squares coefficients for each "bucket".

Theorem

 \mathcal{G} -regression estimator is

- 1. complete,
- 2. the **most efficient** estimator among all consistent, regular estimators that only depend on the **first two moments** of data.

▶ How to derive this estimator?

- 1. Find the MLE under Gaussian errors.
- 2. Show that this MLE is "efficient" even when errors are non-Gaussian.

Buckets, reparametrization and Gaussian MLE

Buckets, reparametrization and Gaussian MLE

Let "buckets" be the maximal connected components of the undirected part of $\mathcal{G}.$

Let "buckets" be the maximal connected components of the undirected part of $\mathcal{G}.$

Let "buckets" be the maximal connected components of the undirected part of $\mathcal{G}.$

Further, buckets can be topologically ordered by the directed part of \mathcal{G} :

$$B_1 = \{S\}, B_2 = \{A\}, B_3 = \{Z, W, T\}, B_4 = \{Y\}.$$

Let "buckets" be the maximal connected components of the undirected part of $\mathcal{G}.$

Further, buckets can be topologically ordered by the directed part of \mathcal{G} :

$$B_1 = \{S\}, B_2 = \{A\}, B_3 = \{Z, W, T\}, B_4 = \{Y\}.$$

Lemma: Restrictive property

For each bucket B_i , vertices in B_i have the same set of external parents, denoted as $Pa(B_i)$.

$$X_{B_1} = \varepsilon_{B_1}, \quad X_{B_k} = \Lambda_{\mathsf{Pa}(B_k), B_k}^{\mathsf{T}} X_{\mathsf{Pa}(B_k)} + \varepsilon_{B_k}, \quad k = 2, \dots, K.$$

- A: $|V| \times |V|$ upper-triangular matrix corresponding to directed edges between buckets.
- ε_{B_k} : errors associated with bucket B_k , independent across buckets.

$$X_{B_1} = \varepsilon_{B_1}, \quad X_{B_k} = \Lambda_{\mathsf{Pa}(B_k), B_k}^{\mathsf{T}} X_{\mathsf{Pa}(B_k)} + \varepsilon_{B_k}, \quad k = 2, \dots, K.$$

- A: $|V| \times |V|$ upper-triangular matrix corresponding to directed edges between buckets.
- ε_{B_k} : errors associated with bucket B_k , independent across buckets.
- ▶ Two nice things happen under this reparametrization:

$$X_{B_1} = \varepsilon_{B_1}, \quad X_{B_k} = \Lambda_{\mathsf{Pa}(B_k), B_k}^{\mathsf{T}} X_{\mathsf{Pa}(B_k)} + \varepsilon_{B_k}, \quad k = 2, \dots, K.$$

- A: $|V| \times |V|$ upper-triangular matrix corresponding to directed edges between buckets.
- ε_{B_k} : errors associated with bucket B_k , independent across buckets.
- ► Two nice things happen under this reparametrization:
 - 1. With $D = An(Y, \mathcal{G}_{V \setminus A})$, τ_{AY} can be identified as

$$\tau_{AY} = \Lambda_{A,D} \left[(I - \Lambda_{D,D})^{-1} \right]_{D,Y}.$$

$$X_{B_1} = \varepsilon_{B_1}, \quad X_{B_k} = \Lambda_{\mathsf{Pa}(B_k), B_k}^{\mathsf{T}} X_{\mathsf{Pa}(B_k)} + \varepsilon_{B_k}, \quad k = 2, \dots, K.$$

- A: $|V| \times |V|$ upper-triangular matrix corresponding to directed edges between buckets.
- ε_{B_k} : errors associated with bucket B_k , independent across buckets.
- ► Two nice things happen under this reparametrization:
 - 1. With $D = An(Y, \mathcal{G}_{V \setminus A})$, τ_{AY} can be identified as

$$\tau_{AY} = \Lambda_{A,D} \left[(I - \Lambda_{D,D})^{-1} \right]_{D,Y}.$$

The bucket-wise error distribution is nuisance.

$$X_{B_1} = \varepsilon_{B_1}, \quad X_{B_k} = \Lambda_{\mathsf{Pa}(B_k), B_k}^{\mathsf{T}} X_{\mathsf{Pa}(B_k)} + \varepsilon_{B_k}, \quad k = 2, \dots, K.$$

- Λ: |V| × |V| upper-triangular matrix corresponding to directed edges between buckets.
- ε_{B_k} : errors associated with bucket B_k , independent across buckets.
- ► Two nice things happen under this reparametrization:
 - 1. With $D = An(Y, \mathcal{G}_{V \setminus A})$, τ_{AY} can be identified as

$$\tau_{AY} = \Lambda_{A,D} \left[(I - \Lambda_{D,D})^{-1} \right]_{D,Y}.$$

The bucket-wise error distribution is nuisance.

2. Under Gaussian errors, the MLE for each $\Lambda_{Pa(B_k),B_k}$ is just the least squares coefficients of $B_k \sim Pa(B_k)$.

W

The SEM according to $\ensuremath{\mathcal{D}}$ can be reparametrized as a block-recursive form according to the buckets:

$$X_{B_1} = \varepsilon_{B_1}, \quad X_{B_k} = \Lambda_{\mathsf{Pa}(B_k), B_k}^{\mathsf{T}} X_{\mathsf{Pa}(B_k)} + \varepsilon_{B_k}, \quad k = 2, \dots, K.$$

- A: $|V| \times |V|$ upper-triangular matrix corresponding to directed edges between buckets.
- ε_{B_k} : errors associated with bucket B_k , independent across buckets.
- ▶ Two nice things happen under this reparametrization:
 - 1. With $D = An(Y, \mathcal{G}_{V \setminus A})$, τ_{AY} can be identified as

$$\tau_{AY} = \Lambda_{A,D} \left[(I - \Lambda_{D,D})^{-1} \right]_{D,Y}.$$

The bucket-wise error distribution is nuisance.

2. Under Gaussian errors, the MLE for each $\Lambda_{Pa(B_k),B_k}$ is just the least squares coefficients of $B_k \sim Pa(B_k)$. $\Im G$ -regression.

The second property is a special case of "seemingly unrelated regression" due to the **restrictive property**.

 $\begin{aligned} (X_Z, X_W, X_T) &= (\lambda_{AZ}, \lambda_{AW}, \lambda_{AT}) X_A + \varepsilon_{B_3}, \\ \varepsilon_{B_3} &\sim \mathcal{N}(\mathbf{0}, \Omega_3), \quad (\Omega_3)_{ZT \cdot W} = \mathbf{0}. \end{aligned}$

W

The second property is a special case of "seemingly unrelated regression" due to the **restrictive property**.

$$\begin{split} (X_Z, X_W, X_T) &= (\lambda_{AZ}, \lambda_{AW}, \lambda_{AT}) X_A + \varepsilon_{B_3}, \\ \varepsilon_{B_3} &\sim \mathcal{N}(\mathbf{0}, \Omega_3), \quad (\Omega_3)_{ZT \cdot W} = 0. \end{split}$$

See also Anderson and Olkin (1985, $\S5$) and Amemiya (1985, $\S6.4$) for this phenomenon.

Efficiency theory

Let Σ_n be the sample covariance. Consider the class of estimators

$$\mathcal{T} = \Big\{ \hat{\tau}(\boldsymbol{\Sigma}_n) : \mathbb{R}_{PD}^{|\mathcal{V}| \times |\mathcal{V}|} \to \mathbb{R}^{|\mathcal{A}|} :$$

 $\hat{\tau}(\Sigma_n)$ is a consistent, asymptotically linear estimator of τ_{AY} .

Efficiency theory

Let Σ_n be the sample covariance. Consider the class of estimators

$$\mathcal{T} = \Big\{ \hat{\tau}(\boldsymbol{\Sigma}_n) : \mathbb{R}_{PD}^{|\mathcal{V}| \times |\mathcal{V}|} \to \mathbb{R}^{|\mathcal{A}|} :$$

 $\hat{\tau}(\Sigma_n)$ is a consistent, asymptotically linear estimator of τ_{AY} .

The efficiency theory entails two parts.

Let Σ_n be the sample covariance. Consider the class of estimators

$$\mathcal{T} = \Big\{ \hat{\tau}(\boldsymbol{\Sigma}_n) : \mathbb{R}_{PD}^{|\mathcal{V}| \times |\mathcal{V}|} \to \mathbb{R}^{|\mathcal{A}|} :$$

 $\hat{\tau}(\Sigma_n)$ is a consistent, asymptotically linear estimator of τ_{AY} .

The efficiency theory entails two parts.

 \blacksquare Establish an efficiency bound on \mathcal{T} .

▶ The bound is derived from the gradient condition on \mathcal{T} (as in standard semiparametric efficiency theory) and a **diffeomorphism**

 $\mathbb{R}_{PD}^{|V| \times |V|} \longleftrightarrow ((\Lambda_{\mathsf{Pa}(B_k, \bar{\mathcal{G}}), B_k}, \Omega_k) : k = 1, \dots, K) \text{ associated with } \bar{\mathcal{G}},$ where $\bar{\mathcal{G}}$ is the saturated version of \mathcal{G} .

Let Σ_n be the sample covariance. Consider the class of estimators

$$\mathcal{T} = \Big\{ \hat{\tau}(\boldsymbol{\Sigma}_n) : \mathbb{R}_{PD}^{|\mathcal{V}| \times |\mathcal{V}|} \to \mathbb{R}^{|\mathcal{A}|} :$$

 $\hat{\tau}(\Sigma_n)$ is a consistent, asymptotically linear estimator of τ_{AY} .

The efficiency theory entails two parts.

 \blacksquare Establish an efficiency bound on \mathcal{T} .

▶ The bound is derived from the gradient condition on \mathcal{T} (as in standard semiparametric efficiency theory) and a **diffeomorphism**

 $\mathbb{R}_{\mathsf{PD}}^{|V| \times |V|} \longleftrightarrow ((\Lambda_{\mathsf{Pa}(B_k, \bar{\mathcal{G}}), B_k}, \Omega_k) : k = 1, \dots, K) \text{ associated with } \bar{\mathcal{G}},$ where $\bar{\mathcal{G}}$ is the saturated version of \mathcal{G} .

This generalizes a result from Drton (2018).

Let Σ_n be the sample covariance. Consider the class of estimators

$$\mathcal{T} = \Big\{ \hat{\tau}(\boldsymbol{\Sigma}_n) : \mathbb{R}_{PD}^{|\mathcal{V}| \times |\mathcal{V}|} \to \mathbb{R}^{|\mathcal{A}|} :$$

 $\hat{\tau}(\Sigma_n)$ is a consistent, asymptotically linear estimator of τ_{AY} .

The efficiency theory entails two parts.

 \blacksquare Establish an efficiency bound on $\mathcal{T}.$

▶ The bound is derived from the gradient condition on \mathcal{T} (as in standard semiparametric efficiency theory) and a **diffeomorphism**

 $\mathbb{R}_{\mathsf{PD}}^{|V| \times |V|} \longleftrightarrow ((\Lambda_{\mathsf{Pa}(B_k, \bar{\mathcal{G}}), B_k}, \Omega_k) : k = 1, \dots, K) \text{ associated with } \bar{\mathcal{G}},$

where $\overline{\mathcal{G}}$ is the saturated version of \mathcal{G} . This generalizes a result from Drton (2018).

Solution Verifying that $\hat{\tau}^{\mathcal{G}}_{AY}$ achieves this bound.

Saturated $\bar{\mathcal{G}}$ according to buckets

 $B_1 = \{S\}, \ B_2 = \{A\}, \ B_3 = \{Z, W, T\}, \ B_4 = \{Y\}.$

Proof sketch

1. Suppose |A| = 1. Rewrite $\hat{\tau} \in \mathcal{T}$ as $\hat{\tau}(\Sigma_n) = \hat{\tau}\left((\hat{\Lambda}_k)_{k,\mathcal{G}}, (\hat{\Lambda}_k)_{k,\mathcal{G}^c}, (\hat{\Omega}_k)_k\right),$

where $(\hat{\Lambda}_k)_{k,\mathcal{G}^c} = (\hat{\Lambda}_k)_{k,\bar{\mathcal{G}}\setminus\mathcal{G}}$ are introduced dashed edges.

Proof sketch

1. Suppose |A| = 1. Rewrite $\hat{\tau} \in \mathcal{T}$ as $\hat{\tau}(\Sigma_n) = \hat{\tau}\left((\hat{\Lambda}_k)_{k,\mathcal{G}}, (\hat{\Lambda}_k)_{k,\mathcal{G}^c}, (\hat{\Omega}_k)_k\right),$

where $(\hat{\Lambda}_k)_{k,\mathcal{G}^c} = (\hat{\Lambda}_k)_{k,\tilde{\mathcal{G}}\setminus\mathcal{G}}$ are introduced dashed edges.

2. Consistency of $\hat{\tau}$ implies

$$\frac{\partial \hat{\tau}}{\partial \hat{\Lambda}_{k,\mathcal{G}}} = \frac{\partial \tau_{\mathcal{G}}}{\partial \hat{\Lambda}_{k,\mathcal{G}}} \ (k = 2, \dots, K), \quad \frac{\partial \hat{\tau}}{\partial \hat{\Omega}_{k}} = \mathbf{0} \ (k = 1, \dots, K),$$

but $\frac{\partial \hat{\tau}}{\partial \hat{\Lambda}_{k,\mathcal{G}^{c}}}$ is free.
Proof sketch

1. Suppose |A| = 1. Rewrite $\hat{\tau} \in \mathcal{T}$ as $\hat{\tau}(\Sigma_n) = \hat{\tau}\left((\hat{\Lambda}_k)_{k,\mathcal{G}}, (\hat{\Lambda}_k)_{k,\mathcal{G}^c}, (\hat{\Omega}_k)_k\right),$

where $(\hat{\Lambda}_k)_{k,\mathcal{G}^c} = (\hat{\Lambda}_k)_{k,\tilde{\mathcal{G}}\setminus\mathcal{G}}$ are introduced dashed edges.

2. Consistency of $\hat{\tau}$ implies

$$\frac{\partial \hat{\tau}}{\partial \hat{\Lambda}_{k,\mathcal{G}}} = \frac{\partial \tau_{\mathcal{G}}}{\partial \hat{\Lambda}_{k,\mathcal{G}}} \ (k = 2, \dots, K), \quad \frac{\partial \hat{\tau}}{\partial \hat{\Omega}_{k}} = \mathbf{0} \ (k = 1, \dots, K),$$

but $\frac{\partial \hat{\tau}}{\partial \hat{\Lambda}_{k,\mathcal{G}^{c}}}$ is free.
3. Compute acov of $\left((\hat{\Lambda}_{k,\mathcal{G}})_{k}, (\hat{\Lambda}_{k,\mathcal{G}^{c}})_{k}\right)$ via asymptotic linear expansions.

Proof sketch

1. Suppose |A| = 1. Rewrite $\hat{\tau} \in \mathcal{T}$ as $\hat{\tau}(\Sigma_n) = \hat{\tau}\left((\hat{\Lambda}_k)_{k,\mathcal{G}}, (\hat{\Lambda}_k)_{k,\mathcal{G}^c}, (\hat{\Omega}_k)_k\right),$

where $(\hat{\Lambda}_k)_{k,\mathcal{G}^c} = (\hat{\Lambda}_k)_{k,\bar{\mathcal{G}}\setminus\mathcal{G}}$ are introduced dashed edges.

2. Consistency of $\hat{\tau}$ implies

$$\frac{\partial \hat{\tau}}{\partial \hat{\Lambda}_{k,\mathcal{G}}} = \frac{\partial \tau_{\mathcal{G}}}{\partial \hat{\Lambda}_{k,\mathcal{G}}} \ (k = 2, \dots, K), \quad \frac{\partial \hat{\tau}}{\partial \hat{\Omega}_k} = \mathbf{0} \ (k = 1, \dots, K),$$

but $\frac{\partial \hat{\tau}}{\partial \hat{\Lambda}_{k,\mathcal{G}^c}}$ is free.

- 3. Compute acov of $((\hat{\Lambda}_{k,\mathcal{G}})_k, (\hat{\Lambda}_{k,\mathcal{G}^c})_k)$ via asymptotic linear expansions.
- 4. By the delta method, an upper bound can be derived from quadratic form

$$\begin{aligned} \operatorname{avar}(\hat{\tau}) &= \begin{pmatrix} \frac{\partial \hat{\tau}}{\partial (\hat{\Lambda}_{k,\mathcal{G}})_{k}} \\ \frac{\partial \hat{\tau}}{\partial (\hat{\Lambda}_{k,\mathcal{G}^{\mathsf{c}}})_{k}} \end{pmatrix}^{\mathsf{T}} \operatorname{acov}\left((\hat{\Lambda}_{k,\mathcal{G}})_{k}, (\hat{\Lambda}_{k,\mathcal{G}^{\mathsf{c}}})_{k}\right) \begin{pmatrix} \frac{\partial \hat{\tau}}{\partial (\hat{\Lambda}_{k,\mathcal{G}})_{k}} \\ \frac{\partial \hat{\tau}}{\partial (\hat{\Lambda}_{k,\mathcal{G}^{\mathsf{c}}})_{k}} \end{pmatrix} \\ &\leq \sup_{\partial \hat{\tau}/\partial (\hat{\Lambda}_{k,\mathcal{G}^{\mathsf{c}}})_{k}} \begin{pmatrix} \frac{\partial \hat{\tau}}{\partial (\hat{\Lambda}_{k,\mathcal{G}})_{k}} \\ \frac{\partial \hat{\tau}}{\partial (\hat{\Lambda}_{k,\mathcal{G}^{\mathsf{c}}})_{k}} \end{pmatrix}^{\mathsf{T}} \operatorname{acov}\left((\hat{\Lambda}_{k,\mathcal{G}})_{k}, (\hat{\Lambda}_{k,\mathcal{G}^{\mathsf{c}}})_{k}\right) \begin{pmatrix} \frac{\partial \hat{\tau}}{\partial (\hat{\Lambda}_{k,\mathcal{G}})_{k}} \\ \frac{\partial \hat{\tau}}{\partial (\hat{\Lambda}_{k,\mathcal{G}^{\mathsf{c}}})_{k}} \end{pmatrix} \end{aligned}$$

1. Draw $\ensuremath{\mathcal{D}}$ from a random graph ensemble.

- 1. Draw $\ensuremath{\mathcal{D}}$ from a random graph ensemble.
- 2. Take $\mathcal{G} = CPDAG(\mathcal{D})$.

- 1. Draw $\ensuremath{\mathcal{D}}$ from a random graph ensemble.
- 2. Take $\mathcal{G} = CPDAG(\mathcal{D})$.
- 3. Simulate data from a linear SEM with random coefficients and a random error type (normal, *t*, logistic, uniform).

- 1. Draw $\ensuremath{\mathcal{D}}$ from a random graph ensemble.
- 2. Take $\mathcal{G} = CPDAG(\mathcal{D})$.
- 3. Simulate data from a linear SEM with random coefficients and a random error type (normal, *t*, logistic, uniform).
- 4. Pick (A, Y) such that τ_{AY} is identified from \mathcal{G} .

- 1. Draw $\ensuremath{\mathcal{D}}$ from a random graph ensemble.
- 2. Take $\mathcal{G} = CPDAG(\mathcal{D})$.
- 3. Simulate data from a linear SEM with random coefficients and a random error type (normal, *t*, logistic, uniform).
- 4. Pick (A, Y) such that τ_{AY} is identified from \mathcal{G} .
- 5. Compute squared error $\|\tau_{AY} \hat{\tau}_{AY}\|^2$.

B We compare to the following estimators in the literature:

- 1. Draw $\ensuremath{\mathcal{D}}$ from a random graph ensemble.
- 2. Take $\mathcal{G} = CPDAG(\mathcal{D})$.
- 3. Simulate data from a linear SEM with random coefficients and a random error type (normal, *t*, logistic, uniform).
- 4. Pick (A, Y) such that τ_{AY} is identified from \mathcal{G} .
- 5. Compute squared error $\|\tau_{AY} \hat{\tau}_{AY}\|^2$.
- № We compare to the following estimators in the literature:
 - adj.0: optimal adjustment estimator (Henckel, Perković, and Maathuis, 2019),

- 1. Draw $\ensuremath{\mathcal{D}}$ from a random graph ensemble.
- 2. Take $\mathcal{G} = CPDAG(\mathcal{D})$.
- 3. Simulate data from a linear SEM with random coefficients and a random error type (normal, *t*, logistic, uniform).
- 4. Pick (A, Y) such that τ_{AY} is identified from \mathcal{G} .
- 5. Compute squared error $\|\tau_{AY} \hat{\tau}_{AY}\|^2$.

№ We compare to the following estimators in the literature:

- adj.0: optimal adjustment estimator (Henckel, Perković, and Maathuis, 2019),
- IDA.M: joint-IDA estimator based on modifying Cholesky decompositions (Nandy, Maathuis, and Richardson, 2017),

- 1. Draw $\ensuremath{\mathcal{D}}$ from a random graph ensemble.
- 2. Take $\mathcal{G} = CPDAG(\mathcal{D})$.
- 3. Simulate data from a linear SEM with random coefficients and a random error type (normal, *t*, logistic, uniform).
- 4. Pick (A, Y) such that τ_{AY} is identified from \mathcal{G} .
- 5. Compute squared error $\|\tau_{AY} \hat{\tau}_{AY}\|^2$.

B We compare to the following estimators in the literature:

- adj.0: optimal adjustment estimator (Henckel, Perković, and Maathuis, 2019),
- IDA.M: joint-IDA estimator based on modifying Cholesky decompositions (Nandy, Maathuis, and Richardson, 2017),
- IDA.R: joint-IDA estimator based on recursive regressions (Nandy, Maathuis, and Richardson, 2017).

Table 1: Percentage of identified instances not estimable using contendingestimators. All instances are estimable with \mathcal{G} -regression.

Estimator	A	<i>V</i> = 20	<i>V</i> = 50	V = 100
	1	0%	0%	0%
- 1: 0	2	17%	10%	5%
adj.U	3	30%	18%	15%
	4	36%	29%	22%
	1	29%	32%	32%
TDA M	2	47%	51%	50%
IDA.M	3	61%	59%	63%
	4	72%	69%	71%
	1	29%	32%	32%
TDA D	2	47%	51%	50%
IDA.R	3	61%	59%	63%
	4	72%	69%	71%

Table 2: Geometric average of squared errors relative to \mathcal{G} -regression,computed from estimable instances.

	V = 20		V	V = 50		V = 100	
A	<i>n</i> = 100	n = 1000	n = 100	n = 1000	n = 100	n = 1000	
adj.O							
1	1.3	1.3	1.4	1.3	1.5	1.5	
2	3.4	4.2	4.7	4.9	4.2	4.5	
3	6.3	5.9	7.4	7.2	7.8	8.0	
4	9.3	9.3	12	14	12	12	
IDA.M							
1	20	19	61	48	103	108	
2	62	65	220	182	293	356	
3	93	119	354	396	749	771	
4	154	222	533	895	1188	1604	
IDA.R							
1	20	19	61	48	103	108	
2	33	38	121	113	176	199	
3	30	39	171	135	342	312	
4	48	50	187	214	405	432	

• Details: arxiv.org/abs/2008.03481

W

- Details: arxiv.org/abs/2008.03481
- **R package** eff²: github.com/richardkwo/eff2

W

- Details: arxiv.org/abs/2008.03481
- **R** package eff²: github.com/richardkwo/eff2
- Why restricting to the first two moments? This is a large class of estimators, containing all the estimators we know from the literature ...

W

- Details: arxiv.org/abs/2008.03481
- **R package** eff²: github.com/richardkwo/eff2
- Why restricting to the first two moments? This is a large class of estimators, containing all the estimators we know from the literature ...

Also, this is a tradeoff between theory and practice. The problem is a generalized, multivariate location-shift regression model (Bickel et al., 1993; Tsiatis, 2006). Theoretically, a semiparametric efficient estimator can be constructed by estimating the error score and then solving estimating equations. But the resulting estimator seems unstable for practical purposes (Tsiatis, 2006).

W

- Details: arxiv.org/abs/2008.03481
- **R package** eff²: github.com/richardkwo/eff2
- Why restricting to the first two moments? This is a large class of estimators, containing all the estimators we

know from the literature ...

Also, this is a tradeoff between theory and practice. The problem is a generalized, multivariate location-shift regression model (Bickel et al., 1993; Tsiatis, 2006). Theoretically, a semiparametric efficient estimator can be constructed by estimating the error score and then solving estimating equations. But the resulting estimator seems unstable for practical purposes (Tsiatis, 2006).

• Beyond linear SEMs?

It worth considering generalization along the lines of Rotnitzky and Smucler (2019).

References

- Amemiya, Takeshi (1985). *Advanced Econometrics*. Harvard University Press.
- Anderson, Theodore Wilbur and Ingram Olkin (1985).
 "Maximum-likelihood estimation of the parameters of a multivariate normal distribution". In: *Linear algebra and its applications* 70, pp. 147–171.
- Bickel, Peter J. et al. (1993). *Efficient and Adaptive Estimation for Semiparametric Models*. Vol. 4. Baltimore: Johns Hopkins University Press.

References ii

- Drton, Mathias (2018). "Algebraic problems in structural equation modeling". In: The 50th Anniversary of Gröbner Bases. Mathematical Society of Japan, pp. 35–86.
- Henckel, Leonard, Emilija Perković, and Marloes H. Maathuis (2019). "Graphical criteria for efficient total effect estimation via adjustment in causal linear models". In: arXiv preprint arXiv:1907.02435.
- Maathuis, Marloes H., Markus Kalisch, and Peter Bühlmann (2009).
 "Estimating high-dimensional intervention effects from observational data". In: *The Annals of Statistics* 37.6A, pp. 3133–3164.
 - Meek, Christopher (1995). "Causal inference and causal explanation with background knowledge". In: Proceedings of the 11th Annual Conference on Uncertainty in Artificial Intelligence (UAI-95), pp. 403–410.

References iii

- Nandy, Preetam, Marloes H. Maathuis, and Thomas S. Richardson (2017). "Estimating the effect of joint interventions from observational data in sparse high-dimensional settings". In: *The Annals of Statistics* 45.2, pp. 647–674.
 - Perković, Emilija (2020). "Identifying causal effects in maximally oriented partially directed acyclic graphs". In: *Proceedings of the 36th Annual Conference on Uncertainty in Artificial Intelligence (UAI-20).*
 - Rotnitzky, Andrea and Ezequiel Smucler (2019). "Efficient adjustment sets for population average treatment effect estimation in non-parametric causal graphical models". In: arXiv preprint arXiv:1912.00306.

Tsiatis, Anastasios (2006). *Semiparametric Theory and Missing Data*. New York: Springer.

References iv

Witte, Janine et al. (2020). "On efficient adjustment in causal graphs". In: *arXiv preprint arXiv:2002.06825*.

Wright, Sewall (1934). "The Method of Path Coefficients". In: *The Annals of Mathematical Statistics* 5.3, pp. 161–215.

Meek's rules

The orientation rules from Meek (1995).