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2. Present a general framework to resolve these drawbacks.
3. Harness extra randomness for many great applications!
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> dml$fit()
     Estimate. Std. Error t value Pr(>|t|)   
tau  -0.1      0.035      -2.86   0.004 **

> set.seed(42)

> set.seed(43) 
> dml$fit()
     Estimate. Std. Error t value Pr(>|t|)   
tau  -0.06     0.035      -1.71   0.08 .

> set.seed(44) 
> dml$fit()
     Estimate. Std. Error t value Pr(>|t|)   
tau  -0.07     0.037      -1.89   0.06 .
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Laura, PhD, a cancer biologist

(MS in Statistics)

Gene 1 Gene 2 Gene 3 …

Cell 1 10 10 0

Cell 2 0 15 4

Cell 3 600 0 20
⋮

Single-cell RNA read count

H0 H1

vs

⚠ Cannot test it with a clustering algorithm. 

Spurious clusters

Kidney tumor

" Is there a new subtype of kidney cancer cells?
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$ Use clustering (e.g., k-means) to find the direction!

⚠ Double dipping!
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Hunt and test!

2-means

© Edward Ross

Dip test 
p-value

Cheng, M‐Y., and Peter Hall. 

Calibrating the excess mass and dip tests of modality. 

Journal of the Royal Statistical Society: Series B (1998)
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> replicate(10, hunt.and.test(data))

p value 

0.2    
0.1    . 
0.6 
0.3 
0.006  *** 
0.4 
0.7 
0.8 
0.3 
0.06   .

" “Significant 1 out of 10 times.”

% “No evidence for a new subtype.”

! Hunted the wrong direction 9/10 times.
( Missed opportunity!

✅
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Dilemma of data splitting: Two drawbacks

Bill

" Raises concern on replicability
Laura

( Misses the true signal in data
⚠ High variability conditional on data ⚠ Low power 

$ Use the information from multiple data splits properly!



Outline
• Setup and main challenge 

• Method: Rank-transformed subsampling   


• Applications


• Hunt and test


• Improving inference for double machine learning


• Testing no direct effect in a sequentially randomized trial


• Future directions

15



Setup: Single split

16



Setup: Single split

16

IID Data: .  Hypothesis testing:  vs .X := (X1, …, Xn) ∼ Pn P ∈ H0 P ∈ H1



Setup: Single split

16

IID Data: .  Hypothesis testing:  vs .X := (X1, …, Xn) ∼ Pn P ∈ H0 P ∈ H1

• Extra randomness  independent of . 

•  is used to split data, perform resampling, etc.

Ω ∼ PΩ X
Ω

“Single-split” statistic:  , where  is        .Tn(X1, …, Xn; Ω) Ω



Setup: Single split

16

IID Data: .  Hypothesis testing:  vs .X := (X1, …, Xn) ∼ Pn P ∈ H0 P ∈ H1

• Extra randomness  independent of . 

•  is used to split data, perform resampling, etc.

Ω ∼ PΩ X
Ω

Assumption. For ,  as  unconditionally.P ∈ H0 Tn(X; Ω) →d F0 n → ∞

• “unconditionally” = over randomness of both  and 

• “conditionally”     = over randomness of  | 

X Ω
Ω X

“Single-split” statistic:  , where  is        .Tn(X1, …, Xn; Ω) Ω



Setup: Single split

16

IID Data: .  Hypothesis testing:  vs .X := (X1, …, Xn) ∼ Pn P ∈ H0 P ∈ H1

• Extra randomness  independent of . 

•  is used to split data, perform resampling, etc.

Ω ∼ PΩ X
Ω

Assumption. For ,  as  unconditionally.P ∈ H0 Tn(X; Ω) →d F0 n → ∞

• “unconditionally” = over randomness of both  and 

• “conditionally”     = over randomness of  | 

X Ω
Ω X

(1)  for p-value

(2)    for Z-statistic

F0 = unif(0,1)
F0 = +(0,1)

“Single-split” statistic:  , where  is        .Tn(X1, …, Xn; Ω) Ω



Setup: Single split

16

IID Data: .  Hypothesis testing:  vs .X := (X1, …, Xn) ∼ Pn P ∈ H0 P ∈ H1

• Extra randomness  independent of . 

•  is used to split data, perform resampling, etc.

Ω ∼ PΩ X
Ω

Assumption. For ,  as  unconditionally.P ∈ H0 Tn(X; Ω) →d F0 n → ∞

• “unconditionally” = over randomness of both  and 

• “conditionally”     = over randomness of  | 

X Ω
Ω X

(1)  for p-value

(2)    for Z-statistic

F0 = unif(0,1)
F0 = +(0,1)

“Single-split” statistic:  , where  is        .Tn(X1, …, Xn; Ω) Ω

“Single-split” test: Reject  whenever  quantile of .H0 Tn ≷ (α F0)
⚠ High conditional variability. ⚠ Low power.
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n := Tn(X; Ω(1)), … , T(L)

n := Tn(X; Ω(L)) .

“Multiple-split”, exchangeable statistics: Fix Draw  as  independent copies of  and letX . Ω(1), …, Ω(L) L Ω

! By construction,  are unconditionally exchangeable. T(1)
n , …, T(L)

n

$ Aggregated statistic:


     for a chosen aggregation function .S : ℝL → ℝ
Sn := S(T(1)

n , …, T(L)
n ),

!  should be symmetric and Lipschitz in .  ! Examples: , .S ∥ ⋅ ∥∞ S = avg S = min

Aggregated test: Reject  when ❓H0 Sn = S(T(1)
n , …, T(L)

n ) ≶

✅ Lower conditional variability and ✅ more power compared to the single-split test:  quantile of .T(1)
n ≷ (α F0)
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   under 
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(2) Copula: Joint distribution of , where  is the CDF of  Fn,P(T(1)
n ), …, Fn,P(T(L)

n ) Fn,P T(1)
n

❓ Unknown, except for its symmetry. 
! Under ,  converges to some unknown distribution that depends on .H0 Sn P ∈ H0
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! Symmetry does not help. (Choi & Kim, 2022)
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Theorem Suppose  is symmetric and Lipschitz. Suppose the 
aggregated  has a continuous asymptotic law under . 

Then, under A1, our test is pointwise asymptotically level .


S( ⋅ )
Sn H0

α

Further, if  and  converge to their respective limit distributions 
uniformly over , then our test is uniformly asymptotic level .

Tn Sn
H0 α

✅ Not conservative

A1. For ,  as .P ∈ H0 Tn(X; Ω) →d F0 ∈ {unif(0,1), +(0,1)} n → ∞
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, L = 2 F0 = unif(0,1)
S = avg
Null distribution of Sn

(e.g., Le Cam’s 3rd Lemma)

$ Intuition: copula under the null  copula under local alternatives≈
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$ For example, when Le Cam’s 3rd lemma is applicable to .(T(1)
n , …, T(L)

n )

Theory: Local power

26

Theorem (informal) Fix 


If the copula of  converges in a locally uniform 
fashion at , then for ’s local alternatives,


| Power(our test) - Power(oracle test) | ,


where the oracle test has access to ’s null distribution under .

P0 ∈ H0 .

(T(1)
n , …, T(L)

n )
P0 P0

→ 0

Sn P0
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! Test hypothesis of the form , where each  is relatively easy to test.H0 = ∩d H0(d) H0(d)

(1) Use  to find  such that  is most likely to be rejected.̂d H0( ̂d)
(2) Use  to compute a test statistic for  and call it .H0( ̂d) Tn

Laura

: gene expression of a random cell in the sample. X ∈ ℝp

(1) Find  by running 2-means on                  .̂d
(2) Compute  := dip test p-value on                 .Tn

= {X ∼ unimodal} ! very hard

⚠ Low power 

= ∩d∈ℝp {d⊤X ∼ unimodal} ! linear unimodality

H0 = {X ∼ only one subtype}

Cheng, M‐Y., and Peter Hall.  “Calibrating the excess mass and dip tests of modality." JRSS-B (1998)

⚠ NOT selective inference!
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Simulation in ℝp

Yufeng Liu, David Neil Hayes, Andrew Nobel, and J. S Marron. 

Statistical significance of clustering for high-dimension, low–sample size data. 


Journal of the American Statistical Association (2008). 

https://CRAN.R-project.org/package=sigclust


• Rank-transform subsampling maintains the correct level and significantly improves power.
• Adaptive version of the algorithm achieves the better performance between the two choices of .S

• SigClust: for unit balls, it loses power as  increases; for multivariate t, it does not control type-I error.p
• Conservatively averaged p-value is not competitive. 
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Hunt and test: Detecting cancer subtypes
ICGC/TCGA Pan-Cancer dataset

111 Kidney Cancer

(Renal Cell Carcinoma) 

Cases

37 Clear Cell (cc)

31 Papillary (P)

43 Chromophobe (Ch)

Selected 1000 genes by 

comparing to control 

Gene 1 Gene 2 Gene 3 …

Cell 1 -1.2 0.5 6.2

Cell 2 0.1 12 1.1

Cell 3 -2.2 0 -2
⋮

Normalized mRNA expression

Happy Laura



Other hunt-and-test / data-split procedures
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• Testing multiple sample (Cox, 1975)


• Split conformal prediction (Lei et al., 2018; Solari & Djordjilović, 2022)


• Goodness-of-fit testing (Janková et al., 2020)


• Conditional (mean) independence testing (Scheidegger et al., 2021; Lundborg et al., 2022)


• Dimension-agnostic inference (Kim & Ramdas, 2020)


    …
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• Testing no direct effect of a sequentially randomized trial


• Future directions
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> set.seed(42) 
> dml$fit()
     Estimate. Std. Error t value Pr(>|t|)   
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> set.seed(43) 
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     Estimate. Std. Error t value Pr(>|t|)   
tau  -0.1      0.035      -2.86   0.004 **

> set.seed(43) 
> dml$fit()
     Estimate. Std. Error t value Pr(>|t|)   
tau  -0.06     0.035      -1.71   0.08 .

Problem 2. DML Std. Error tends to be too small
! It ignores cross-fold correlation

Problem 1. Conditional variability due to data splitting

Evaluate ̂τ(1)

Fit ̂η(1)
1 , ̂η(1)

2

̂τDML
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$ Each fold defines a “single-split” statistic T(1)
n :=
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n( ̂τDML − τ)
σ

= 1
2

(T(1)
n + T(2)

n ) → +(0,1) .

" Under conditions required by DML, between-fold correlation .
ρ → 0

DML

Std. Error

Actual

σ/ n

  σ 1 + ρ(L − 1) / n

⚠ For finite sample, .ρ > 0

Evaluate ̂τ(1)

Fit ̂η(1)
1 , ̂η(1)

2

̂τDML

Fit ̂η(2)
1 , ̂η(2)
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! Can be performed without knowing  or :τ σ

rank (T(l)
m ) = rank { m/2( ̂τ(l)

m − τ)
σ } = rank ( ̂τ(l)

m )

Relieved Bill

covariates X

cash 
bonus A

unemployment 
duration Y

τ

$ Rank-transformed subsampling automatically accounts for .ρ

✅ Calibrated CI’s by accounting for correlation. 
✅ Improved replicability by averaging over data splits. 
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A1 L A2 Y

U
health status

• SMART trials

    (Murphy, 2005; Murphy et al., 2006)

© d3c.isr.umich.edu

• Observational / follow-up studies

    HIV studies: : antiretroviral therapy; : CD4 cell countsA1, A2 L, Y

© NIH
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38

Sharp null hypothesis :   for every individual .H0 τi ≡ 0 i

 is the potential outcome had subject  taken treatments .Yi(a1, a2) i (a1, a2)
* More precisely,  and  for every .Yi(1,0) − Yi(0,0) ≡ 0 Yi(1,1) − Yi(0,1) = 0 iA1 L A2 Y

U
health status

X

Graph under the sharp null H0

: the direct effect of  on   (i.e., not through ).τ A1 Y A2

"  cannot be formulated as an independence or conditional independence.H0
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Testing the sharp null
Sequentially randomized trial under the sharp null

A1 L A2 Y

U

X

P

Completely randomized trial under the sharp null

A1 L A2 Y

U

X

Q

$ Sharp null :   ⫫ ,  .H0 A1 Y (Q) dQ/dP = q(A2)/p(A2 |A1, L)

 is an arbitrary (positive) distribution over q(A2) A2

dQ/dP = q(A2)/p(A2 |A1, L)

! This is a generalized / “dormant” independence, aka. Verma constraint on .P
Robins (1986, 1999), Verma & Pearl (1990), Wermuth & Cox (2008), Richardson et al. (2017)

An instance of “distribution shift”. 
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A lot of recent progress in independence / conditional independence testing. 
Independence: kernel embedding (Gretton et al., 2005, 2007), rank correlation coefficients (Bergsma & Dassios, 2014; Drton et al., 2020; Shi et 

al., 2021), optimal rates via U-statistics (Berrett et al., 2021), optimal transport (Liu et al., 2022), etc.
Conditional 
Independence:

kernel method (Zhang et al., 2011), generalized covariance measure (Shah & Peters, 2020; Scheidegger et al., 2022), copula 
(Petersen & Hansen, 2021), projected covariance (Lundborg et al., 2022), model-X (Candès et al., 2018; Berrett et al., 2020), etc.

$ We can simulate data from .Q
Rejection Sample /


Resample (Thams et al. 2021) 

∝ dQ /dP
Tn

Test

P Q

Sampling

Inverse probability weighting (IPW)

Randomized

Yes

No

Reduced 

sample size

Yes

No

Need

re-calibration

No

Yes
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Simulation: Linear SEM

41

A1 L A2 Y

U

τ

   holds covQ(A1, Y ) = 0 ⟺ H0

P

(1) Rej. Sample + Permutation

Rejection Sample

∝ dQ /dP  := Perm. p-value of Tn covQ(A1, Y )
Q

(2) IPW for  (Robins, 1999)covQ(A1, Y )

Zi :=
Yi(A1,i − "A1)
P(A2,i ∣ Li, A1,i)

, χn :=
∑i Zi

∑i Z2
i

→d +(0,1) .
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Meta-algorithm: Rank-transformed Subsampling

Reduces (conditional) variability & Boosts power! 
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Empowering causal discovery

45

Gene 1 Gene 2 Gene 3 …

Cell 1 10 10 0

Cell 2 0 15 4

Cell 3 600 0 20
⋮

% State of the art: cannot utilize generalized conditional independence.

$ Generalized conditional independence can be very informative about the graph!

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5

+ Uniquely identified (from ~30,000 
possibilities) from one single generalized 
conditional independence constraint!


Robins. Interview with Jamie Robins. Observational Studies (2022).
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Data Analysis Result
Randomize De-randomize

" How much power can we hope to extract?

" Replicability: computational ➠ statistical

! Missing data / imputation

! Random projection

! Causal inference & causal discovery
• Observed distribution → Intervened distribution

! Flexible goodness-of-fit

    e.g., quantile regression
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Consider introducing a new covariate  for as a non-linear .Xp+1 := ξ(X) ξ( ⋅ )
$ If linear model is well-specified, then the should have  inβp+1 = 0

 .Y ∼ β0 + β1X1 + … + βpXp+ βp+1Xp+1

! Test .∩ξ {H0(ξ) : βp+1 = 0}

(1) Use  to find  such that  is likely to be “significant”.̂ξ Xp+1 = ξ(X)
(2) Use  to compute a test statistic for .βp+1 = 0
* Use any existing device for parameter inference. 

" How to find ?̂ξ $ Gradient boosting!

Jerome H. Friedman. Greedy function approximation: a gradient boosting machine. 

Annals of Statistics (2001).
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Fitted . With new covariate ,Y ∼ ̂β⊤X Xp+1

   ∑
i

l(Yi − ̂β⊤Xi − βp+1Xi,p+1) ≈ ∑
i

l(Yi − ̂β⊤Xi) − βi ∑
i

l′ (Yi − ̂β⊤Xi) Xi,p+1

(1) On  : Train any ML algorithm  to predict  from .̂ξ l′ (resid) X

(2) On  : Compute statistic for testing  in  .βp+1 = 0 Y ∼ β⊤X + βp+1 ̂ξ(X)
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1 + X2
2 + (1 + X2 + X3) ε

 (median)τ = 0.5

: random forest classifier .̂ξ sign(resid) ∼ X

: standard “t-value” from quantreg.Tn

Chen Dong, Guodong Li, and Xingdong Feng. 

Lack‐of‐fit tests for quantile regression models. 

Journal of the Royal Statistical Society: Series B (2019).


