

Harnessing Extra Randomness

Replicability, Flexibility \& Causality

F. Richard Guo

Statistical Laboratory, University of Cambridge
Feb, 2023
Based on joint work w/ Rajen Shah

© www.compoundchem.com

Organic solvents such as

© www.compoundchem.com

Randomized procedures

Randomized procedures

\sim Output of the procedure is a random function of data.

Randomized procedures

\sim Output of the procedure is a random function of data.

Randomized procedures

\sim Output of the procedure is a random function of data.

Extra randomness

Randomized procedures

\approx Output of the procedure is a random function of data.

Extra randomness

Randomized procedures

\leftrightarrow Output of the procedure is a random function of data.

Extra randomness

Randomized procedures

\leftrightarrow Output of the procedure is a random function of data.

Extra randomness

Randomized procedures

\leftrightarrow Output of the procedure is a random function of data.

Extra randomness

- Data splitting

Randomly divide iid data into several parts for different purposes.

- Data splitting

Randomly divide iid data into several parts for different purposes.
iid data points \square \square

- Data splitting

Randomly divide iid data into several parts for different purposes.
iid data points \square $\square \square$ \square \square \square
\square

- Data splitting

Randomly divide iid data into several parts for different purposes.

- Data splitting

Randomly divide iid data into several parts for different purposes.
iid data points

\square
\square
\square \% ($\square \square \square \square \square$) and ($\square \square \square \square \square$) are independent.
\approx Control overfitting \approx Prevent double dipping

- Data splitting

Randomly divide iid data into several parts for different purposes.

iid data points

3

$$
\approx \text { Control overfitting } \quad \sim \text { Prevent double dipping }
$$

- Sampling

- Data splitting

Randomly divide iid data into several parts for different purposes.

- Sampling

- Data splitting

Randomly divide iid data into several parts for different purposes.

iid data points	$\square \square \square \square \square \square \square \square \square \square$

- Sampling

- Data splitting

Randomly divide iid data into several parts for different purposes.

iid data points	$\square \square \square \square \square \square \square \square)$ and $(\square \square \square \square \square)$ are independent.
	$(\square \square \square \square \square)$
	\leftarrow Control overfitting \quad Prevent double dipping

- Sampling

- Random imputation

- Data splitting

Randomly divide iid data into several parts for different purposes.

iid data points	$\square \square \square \square \square \square \square \square)$ and $(\square \square \square \square \square)$ are independent.
	$(\square \square \square \square \square)$
	\leftarrow Control overfitting \quad Prevent double dipping

- Sampling

- Random imputation

- Data splitting

Randomly divide iid data into several parts for different purposes.

iid data points	$\square \square \square \square \square \square \square \square)$ and $(\square \square \square \square \square)$ are independent.
	$(\square \square \square \square \square)$
	\leftarrow Control overfitting \quad Prevent double dipping

- Sampling

- Random imputation

Agenda

Agenda

1. Though useful, randomized procedures have serious drawbacks.

Agenda

1. Though useful, randomized procedures have serious drawbacks.
2. Present a general framework to resolve these drawbacks.

Agenda

1. Though useful, randomized procedures have serious drawbacks.
2. Present a general framework to resolve these drawbacks.
3. Harness extra randomness for many great applications!

Dilemma of data splitting

Bill, PhD, an economist

Bill, PhD, an economist

Bill, PhD, an economist
\hookleftarrow Doubly robust estimation of τ requires fitting two nuisance functions:

$$
\begin{aligned}
& \eta_{1}=\mathbb{P}(A \mid \mathbf{X}) \\
& \eta_{2}=\mathbb{E}[Y \mid A, \mathbf{X}]
\end{aligned}
$$

Bill, PhD, an economist
\hookleftarrow Doubly robust estimation of τ requires fitting two nuisance functions:

$$
\begin{aligned}
\eta_{1} & =\mathbb{P}(A \mid \mathbf{X}) \\
\eta_{2} & =\mathbb{E}[Y \mid A, \mathbf{X}]
\end{aligned}
$$

Targeted / Double ML: permit using flexible ML tools to estimate η_{1}, η_{2}. ω Use data splitting / cross fitting to control bias from overfitting $\hat{\eta}_{1}, \hat{\eta}_{2}$.

(van der Laan \& Rose, 2011; Newey and Robins, 2018; Chernozhukov et al., 2018; Díaz, 2020; Kennedy, 2022)

Bill, PhD, an economist
\hookleftarrow Doubly robust estimation of τ requires fitting two nuisance functions:

$$
\begin{aligned}
& \eta_{1}=\mathbb{P}(A \mid \mathbf{X}) \\
& \eta_{2}=\mathbb{E}[Y \mid A, \mathbf{X}]
\end{aligned}
$$

Targeted / Double ML: permit using flexible ML tools to estimate η_{1}, η_{2}. ω Use data splitting / cross fitting to control bias from overfitting $\hat{\eta}_{1}, \hat{\eta}_{2}$.

(van der Laan \& Rose, 2011; Newey and Robins, 2018; Chernozhukov et al., 2018; Díaz, 2020; Kennedy, 2022)

Bill, PhD, an economist
\hookleftarrow Doubly robust estimation of τ requires fitting two nuisance functions:

$$
\begin{aligned}
\eta_{1} & =\mathbb{P}(A \mid \mathbf{X}) \\
\eta_{2} & =\mathbb{E}[Y \mid A, \mathbf{X}]
\end{aligned}
$$

Targeted / Double ML: permit using flexible ML tools to estimate η_{1}, η_{2}. \sim Use data splitting / cross fitting to control bias from overfitting $\hat{\eta}_{1}, \hat{\eta}_{2}$.

(van der Laan \& Rose, 2011; Newey and Robins, 2018; Chernozhukov et al., 2018; Díaz, 2020; Kennedy, 2022)

Bos

Bill, PhD, an economist
\hookleftarrow Doubly robust estimation of τ requires fitting two nuisance functions:

$$
\begin{aligned}
& \eta_{1}=\mathbb{P}(A \mid \mathbf{X}) \\
& \eta_{2}=\mathbb{E}[Y \mid A, \mathbf{X}]
\end{aligned}
$$

Targeted / Double ML: permit using flexible ML tools to estimate η_{1}, η_{2}. \approx Use data splitting / cross fitting to control bias from overfitting $\hat{\eta}_{1}, \hat{\eta}_{2}$.

(van der Laan \& Rose, 2011; Newey and Robins, 2018; Chernozhukov et al., 2018; Díaz, 2020; Kennedy, 2022)

\%

Bill, PhD, an economist
\hookleftarrow Doubly robust estimation of τ requires fitting two nuisance functions:

$$
\begin{aligned}
& \eta_{1}=\mathbb{P}(A \mid \mathbf{X}) \\
& \eta_{2}=\mathbb{E}[Y \mid A, \mathbf{X}]
\end{aligned}
$$

Targeted / Double ML: permit using flexible ML tools to estimate η_{1}, η_{2}. ω Use data splitting / cross fitting to control bias from overfitting $\hat{\eta}_{1}, \hat{\eta}_{2}$.

(van der Laan \& Rose, 2011; Newey and Robins, 2018; Chernozhukov et al., 2018; Díaz, 2020; Kennedy, 2022)

Cos

Bill, PhD, an economist
\hookleftarrow Doubly robust estimation of τ requires fitting two nuisance functions:

$$
\begin{aligned}
& \eta_{1}=\mathbb{P}(A \mid \mathbf{X}) \\
& \eta_{2}=\mathbb{E}[Y \mid A, \mathbf{X}]
\end{aligned}
$$

Targeted / Double ML: permit using flexible ML tools to estimate η_{1}, η_{2}. ω Use data splitting / cross fitting to control bias from overfitting $\hat{\eta}_{1}, \hat{\eta}_{2}$.

(van der Laan \& Rose, 2011; Newey and Robins, 2018; Chernozhukov et al., 2018; Díaz, 2020; Kennedy, 2022)

B

Bill, PhD, an economist
\hookleftarrow Doubly robust estimation of τ requires fitting two nuisance functions:

$$
\begin{aligned}
& \eta_{1}=\mathbb{P}(A \mid \mathbf{X}) \\
& \eta_{2}=\mathbb{E}[Y \mid A, \mathbf{X}]
\end{aligned}
$$

Targeted / Double ML: permit using flexible ML tools to estimate η_{1}, η_{2}. ω Use data splitting / cross fitting to control bias from overfitting $\hat{\eta}_{1}, \hat{\eta}_{2}$.

(van der Laan \& Rose, 2011; Newey and Robins, 2018; Chernozhukov et al., 2018; Díaz, 2020; Kennedy, 2022)

Cos

$\hat{\tau}_{D M L}$

We find a significant negative effect* $(\hat{\tau}=-0.1, \mathrm{p}$-value $=0.004) \ldots$

* To replicate my analysis, please use "set.seed(42)" (my lucky number).

We find a significant negative effect* $(\hat{\tau}=-0.1, \mathrm{p}$-value $=0.004) \ldots$

* To replicate my analysis, please use "set.seed(42)" (my lucky number).

Reviewer:

; "To replicate, why must I use your lucky number?"

We find a significant negative effect* $(\hat{\tau}=-0.1, \mathrm{p}$-value $=0.004) \ldots$

* To replicate my analysis, please use "set.seed(42)" (my lucky number).

Reviewer:

: "To replicate, why must I use your lucky number?"
; "How do I know you did not fish for 42?"

Laura, PhD, a cancer biologist (MS in Statistics)

Laura, PhD, a cancer biologist (MS in Statistics)
: Is there a new subtype of kidney cancer cells?

Laura, PhD, a cancer biologist (MS in Statistics)

Single-cell RNA read count

	Gene 1	Gene 2	Gene 3	\ldots
Cell 1	10	10	0	
Cell 2	0	15	4	
Cell 3	600	0	20	
\vdots				

:3s there a new subtype of kidney cancer cells?

Laura, PhD, a cancer biologist (MS in Statistics)

Kidney tumor

	Gene 1	Gene 2	Gene 3	\ldots
Cell 1	10	10	0	
Cell 2	0	15	4	
Cell 3	600	0	20	
\vdots				

Single-cell RNA read count

2 Is there a new subtype of kidney cancer cells?

Unsupervised learning

Laura, PhD, a cancer biologist (MS in Statistics)

:3 Is there a new subtype of kidney cancer cells?

Laura, PhD, a cancer biologist (MS in Statistics)
! Cannot test it with a clustering algorithm.

\& Use clustering (e.g., k-means) to find the direction!

8 Use clustering (e.g., k-means) to find the direction!

! Double dipping!

8 Use clustering (e.g., k-means) to find the direction!

! Double dipping!

DO 12
DIRENC

Hunt and test!

Hunt and test!

Hunt and test!

8

Hunt and test!

3

Hunt and test!

8

> replicate(10, hunt.and.test(data))

3

x

p value	
0.2	
0.1	.
0.6	
0.3	
0.006	$* * *$
0.4	
0.7	
0.8	
0.3	
$0.06 \quad$.	

(3) "Significant 1 out of 10 times."
: " "No evidence for a new subtype."

S
v

(3) "Significant 1 out of 10 times."
: "No evidence for a new subtype."

E
\sim Hunted the wrong direction 9/10 times.
© Missed opportunity!

Dilemma of data splitting: Two drawbacks

Dilemma of data splitting: Two drawbacks

(3) Raises concern on replicability

Laura
(2) Misses the true signal in data

Dilemma of data splitting: Two drawbacks

(2) Raises concern on replicability
4. High variability conditional on data

Laura
Misses the true signal in data

Dilemma of data splitting: Two drawbacks

(2) Raises concern on replicability
4. High variability conditional on data

Laura
(-) Misses the true signal in data
! Low power

Dilemma of data splitting: Two drawbacks

(3) Raises concern on replicability
! High variability conditional on data

Laura
(-) Misses the true signal in data
! Low power

8 Use the information from multiple data splits properly!

Outline

- Setup and main challenge
- Method: Rank-transformed subsampling
- Applications
- Hunt and test
- Improving inference for double machine learning
- Testing no direct effect in a sequentially randomized trial
- Future directions

Setup: Single split

Setup: Single split

IID Data: $X:=\left(X_{1}, \ldots, X_{n}\right) \sim P^{n}$. Hypothesis testing: $P \in H_{0}$ vs $P \in H_{1}$.

Setup: Single split

IID Data: $X:=\left(X_{1}, \ldots, X_{n}\right) \sim P^{n}$. Hypothesis testing: $P \in H_{0}$ vs $P \in H_{1}$.
"Single-split" statistic: $T_{n}\left(X_{1}, \ldots, X_{n} ; \Omega\right)$, where Ω is

- Extra randomness $\Omega \sim P_{\Omega}$ independent of X.
- Ω is used to split data, perform resampling, etc.

Setup: Single split

IID Data: $X:=\left(X_{1}, \ldots, X_{n}\right) \sim P^{n}$. Hypothesis testing: $P \in H_{0}$ vs $P \in H_{1}$.
"Single-split" statistic: $T_{n}\left(X_{1}, \ldots, X_{n} ; \Omega\right)$, where Ω is

- Extra randomness $\Omega \sim P_{\Omega}$ independent of X.
- Ω is used to split data, perform resampling, etc.

Assumption. For $P \in H_{0}, T_{n}(X ; \Omega) \rightarrow{ }_{d} F_{0}$ as $n \rightarrow \infty$ unconditionally.

- "unconditionally" = over randomness of both X and Ω
- "conditionally" = over randomness of $\Omega \mid X$

Setup: Single split

IID Data: $X:=\left(X_{1}, \ldots, X_{n}\right) \sim P^{n}$. Hypothesis testing: $P \in H_{0}$ vs $P \in H_{1}$.
"Single-split" statistic: $T_{n}\left(X_{1}, \ldots, X_{n} ; \Omega\right)$, where Ω is

- Extra randomness $\Omega \sim P_{\Omega}$ independent of X.
- Ω is used to split data, perform resampling, etc.

Assumption. For $P \in H_{0}, T_{n}(X ; \Omega) \rightarrow{ }_{d} F_{0}$ as $n \rightarrow \infty$ unconditionally.
(1) $F_{0}=$ unif $(0,1)$ for p -value
(2) $F_{0}=\mathscr{N}(0,1)$ for Z-statistic

- "unconditionally" = over randomness of both X and Ω
- "conditionally" = over randomness of $\Omega \mid X$

Setup: Single split

IID Data: $X:=\left(X_{1}, \ldots, X_{n}\right) \sim P^{n}$. Hypothesis testing: $P \in H_{0}$ vs $P \in H_{1}$.
"Single-split" statistic: $T_{n}\left(X_{1}, \ldots, X_{n} ; \Omega\right)$, where Ω is

- Extra randomness $\Omega \sim P_{\Omega}$ independent of X.
- Ω is used to split data, perform resampling, etc.

Assumption. For $P \in H_{0}, T_{n}(X ; \Omega) \rightarrow{ }_{d} F_{0}$ as $n \rightarrow \infty$ unconditionally.

- "unconditionally" = over randomness of both X and Ω
- "conditionally" $=$ over randomness of $\Omega \mid X$
"Single-split" test: Reject H_{0} whenever $T_{n} \gtrless\left(\alpha\right.$ quantile of $\left.F_{0}\right)$.

4. High conditional variability. ! Low power.
(1) $F_{0}=$ unif $(0,1)$ for p -value
(2) $F_{0}=\mathscr{N}(0,1)$ for Z-statistic

Setup: Aggregation

"Multiple-split", exchangeable statistics: Fix X. Draw $\Omega^{(1)}, \ldots, \Omega^{(L)}$ as L independent copies of Ω and let

$$
T_{n}^{(1)}:=T_{n}\left(X ; \Omega^{(1)}\right), \quad \ldots \quad, T_{n}^{(L)}:=T_{n}\left(X ; \Omega^{(L)}\right)
$$

Setup: Aggregation

"Multiple-split", exchangeable statistics: Fix X. $\operatorname{Draw} \Omega^{(1)}, \ldots, \Omega^{(L)}$ as L independent copies of Ω and let

$$
T_{n}^{(1)}:=T_{n}\left(X ; \Omega^{(1)}\right), \quad \ldots \quad, T_{n}^{(L)}:=T_{n}\left(X ; \Omega^{(L)}\right)
$$

\approx By construction, $T_{n}^{(1)}, \ldots, T_{n}^{(L)}$ are unconditionally exchangeable.

Setup: Aggregation

"Multiple-split", exchangeable statistics: Fix X. Draw $\Omega^{(1)}, \ldots, \Omega^{(L)}$ as L independent copies of Ω and let

$$
T_{n}^{(1)}:=T_{n}\left(X ; \Omega^{(1)}\right), \quad \cdots \quad, T_{n}^{(L)}:=T_{n}\left(X ; \Omega^{(L)}\right)
$$

\approx By construction, $T_{n}^{(1)}, \ldots, T_{n}^{(L)}$ are unconditionally exchangeable.
Aggregated statistic:

$$
S_{n}:=S\left(T_{n}^{(1)}, \ldots, T_{n}^{(L)}\right)
$$

for a chosen aggregation function $S: \mathbb{R}^{L} \rightarrow \mathbb{R}$.
$\approx S$ should be symmetric and Lipschitz in $\|\cdot\|_{\infty}$. Examples: $S=$ avg, $S=$ min.

Setup: Aggregation

"Multiple-split", exchangeable statistics: Fix X. Draw $\Omega^{(1)}, \ldots, \Omega^{(L)}$ as L independent copies of Ω and let

$$
T_{n}^{(1)}:=T_{n}\left(X ; \Omega^{(1)}\right), \quad \cdots \quad, T_{n}^{(L)}:=T_{n}\left(X ; \Omega^{(L)}\right)
$$

\approx By construction, $T_{n}^{(1)}, \ldots, T_{n}^{(L)}$ are unconditionally exchangeable.
Aggregated statistic:

$$
S_{n}:=S\left(T_{n}^{(1)}, \ldots, T_{n}^{(L)}\right)
$$

for a chosen aggregation function $S: \mathbb{R}^{L} \rightarrow \mathbb{R}$.
$\approx S$ should be symmetric and Lipschitz in $\|\cdot\|_{\infty} \cdot \approx$ Examples: $S=$ avg, $S=$ min.
Aggregated test: Reject H_{0} when $S_{n}=S\left(T_{n}^{(1)}, \ldots, T_{n}^{(L)}\right) \lessgtr$?

Setup: Aggregation

"Multiple-split", exchangeable statistics: Fix X. Draw $\Omega^{(1)}, \ldots, \Omega^{(L)}$ as L independent copies of Ω and let

$$
T_{n}^{(1)}:=T_{n}\left(X ; \Omega^{(1)}\right), \quad \ldots \quad, T_{n}^{(L)}:=T_{n}\left(X ; \Omega^{(L)}\right)
$$

\approx By construction, $T_{n}^{(1)}, \ldots, T_{n}^{(L)}$ are unconditionally exchangeable.
Aggregated statistic:

$$
S_{n}:=S\left(T_{n}^{(1)}, \ldots, T_{n}^{(L)}\right),
$$

for a chosen aggregation function $S: \mathbb{R}^{L} \rightarrow \mathbb{R}$.
$\approx S$ should be symmetric and Lipschitz in $\|\cdot\|_{\infty}$. Examples: $S=$ avg, $S=$ min.
Aggregated test: Reject H_{0} when $S_{n}=S\left(T_{n}^{(1)}, \ldots, T_{n}^{(L)}\right) \lessgtr$?
∇ Lower conditional variability and ∇ more power compared to the single-split test: $T_{n}^{(1)} \gtrless\left(\alpha\right.$ quantile of $\left.F_{0}\right)$.

Main challenge

2. Aggregated test: Reject H_{0} when $S_{n}=S\left(T_{n}^{(1)}, \ldots, T_{n}^{(L)}\right) \lessgtr$?

Main challenge

2 Aggregated test: Reject H_{0} when $S_{n}=S\left(T_{n}^{(1)}, \ldots, T_{n}^{(L)}\right) \lessgtr$?

: $\left(T_{n}^{(1)}, \ldots, T_{n}^{(L)}\right)$
under H_{0}

Main challenge

2. Aggregated test: Reject H_{0} when $S_{n}=S\left(T_{n}^{(1)}, \ldots, T_{n}^{(L)}\right) \lessgtr$?
($\left.T_{n}^{(1)}, \ldots, T_{n}^{(L)}\right)\left\{\begin{array}{l}\text { (1) Marginal: } \\ \text { under } H_{0} \\ (2) \text { Copula: }\end{array}\right.$

Main challenge

: Aggregated test: Reject H_{0} when $S_{n}=S\left(T_{n}^{(1)}, \ldots, T_{n}^{(L)}\right) \lessgtr$?
$\left(T_{n}^{(1)}, \ldots, T_{n}^{(L)}\right)$
under $H_{0}$$\left\{\begin{array}{l}\text { (1) Marginal: Every } T_{n}^{(l)} \rightarrow{ }_{d} F_{0} \text { under } H_{0} \nabla \\ \text { (2) Copula: }\end{array}\right.$

Main challenge

2. Aggregated test: Reject H_{0} when $S_{n}=S\left(T_{n}^{(1)}, \ldots, T_{n}^{(L)}\right) \lessgtr$?
$\left(T_{n}^{(1)}, \ldots, T_{n}^{(L)}\right)$
under $H_{0}$$\left\{\begin{array}{l}(1) \text { Marginal: Every } T_{n}^{(l)} \rightarrow{ }_{d} F_{0} \text { under } H_{0} \text { 『 } \\ \text { (2) Copula: Joint distribution of } F_{n, P}\left(T_{n}^{(1)}\right), \ldots, F_{n, P}\left(T_{n}^{(L)}\right) \text {, where } F_{n, P} \text { is the CDF of } T_{n}^{(1)}\end{array}\right.$

Main challenge

(:) Aggregated test: Reject H_{0} when $S_{n}=S\left(T_{n}^{(1)}, \ldots, T_{n}^{(L)}\right) \lessgtr$?
$\left(T_{n}^{(1)}, \ldots, T_{n}^{(L)}\right)$
under $H_{0}$$\left\{\begin{array}{l}(1) \text { Marginal: Every } T_{n}^{(l)} \rightarrow{ }_{d} F_{0} \text { under } H_{0} \nabla \\ (2) \text { Copula: Joint distribution of } F_{n, P}\left(T_{n}^{(1)}\right), \ldots, F_{n, P}\left(T_{n}^{(L)}\right) \text {, where } F_{n, P} \text { is the CDF of } T_{n}^{(1)}\end{array}\right.$? Unknown, except for its symmetry.

Main challenge

2. Aggregated test: Reject H_{0} when $S_{n}=S\left(T_{n}^{(1)}, \ldots, T_{n}^{(L)}\right) \lessgtr$?

Typically, S_{n} will converge to some non-degenerate limit distribution under H_{0}.

Existing approaches: Two types

Existing approaches: Two types

(1) Assumes a parametric copula (e.g., Gaussian) and fits it.

Existing approaches: Two types

(1) Assumes a parametric copula (e.g., Gaussian) and fits it.
! Easily misspecified in real applications. Cannot control type-I error.
Kim \& Ramdas (2020)
$X_{1}, \ldots, X_{n} \sim \mathcal{N}(\mu, \Sigma)$ in \mathbb{R}^{3}.
Single-split statistic for testing $H_{0}: \mu=\mathbf{0}$
$T_{n}:=\frac{\sqrt{n_{2}} \hat{\mu}_{1}^{\top} \hat{\mu}_{2}}{\hat{\mu}_{1}^{\top} \hat{\Sigma}_{2} \hat{\mu}_{1}} \rightarrow_{d} \mathcal{N}(0,1)$ under H_{0}.

Existing approaches: Two types

(1) Assumes a parametric copula (e.g., Gaussian) and fits it.
! Easily misspecified in real applications. Cannot control type-I error.
Kim \& Ramdas (2020)
$X_{1}, \ldots, X_{n} \sim \mathcal{N}(\mu, \Sigma)$ in \mathbb{R}^{3}.
Single-split statistic for testing $H_{0}: \mu=\mathbf{0}$
$T_{n}:=\frac{\sqrt{n_{2}} \hat{\mu}_{1}^{\top} \hat{\mu}_{2}}{\hat{\mu}_{1}^{\top} \hat{\Sigma}_{2} \hat{\mu}_{1}} \rightarrow_{d} \mathcal{N}(0,1)$ under H_{0}.
! Copula can be complex. No generic approximation.

Null distribution of $\left(T_{n}^{(1)}+\ldots+T_{n}^{(200)}\right) / 200$

Existing approaches: Two types

(1) Assumes a parametric copula (e.g., Gaussian) and fits it.
! Easily misspecified in real applications. Cannot control type-I error.
Kim \& Ramdas (2020)
$X_{1}, \ldots, X_{n} \sim \mathcal{N}(\mu, \Sigma)$ in \mathbb{R}^{3}.
Single-split statistic for testing $H_{0}: \mu=\mathbf{0}$
$T_{n}:=\frac{\sqrt{n_{2}} \hat{\mu}_{1}^{\top} \hat{\mu}_{2}}{\hat{\mu}_{1}^{\top} \hat{\Sigma}_{2} \hat{\mu}_{1}} \rightarrow_{d} \mathcal{N}(0,1)$ under H_{0}.
! Copula can be complex. No generic approximation.

Null distribution of $\left(T_{n}^{(1)}+\ldots+T_{n}^{(200)}\right) / 200$
(2) Guards against the worst-case copula.

Existing approaches: Two types

(1) Assumes a parametric copula (e.g., Gaussian) and fits it.
! Easily misspecified in real applications. Cannot control type-I error.
Kim \& Ramdas (2020)
$X_{1}, \ldots, X_{n} \sim \mathcal{N}(\mu, \Sigma)$ in \mathbb{R}^{3}.
Single-split statistic for testing $H_{0}: \mu=\mathbf{0}$
$T_{n}:=\frac{\sqrt{n_{2}} \hat{\mu}_{1}^{\top} \hat{\mu}_{2}}{\hat{\mu}_{1}^{\top} \hat{\Sigma}_{2} \hat{\mu}_{1}} \rightarrow_{d} \mathcal{N}(0,1)$ under H_{0}.
! Copula can be complex. No generic approximation.

Null distribution of $\left(T_{n}^{(1)}+\ldots+T_{n}^{(200)}\right) / 200$
(2) Guards against the worst-case copula.
\approx A large body of literature on combining p-values under arbitrary dependence.

- Averaging p-values multiplied by two (Rüschendorf, 1982; Meng, 1994)
- Generalized means (Vovk \& Wang, 2020)
- Quantiles (Meinshausen et al., 2009; DiCiccio et al., 2020)
- Concentration inequalities (DiCiccio et al., 2020)
- Cauchy transformations (Liu \& Xie, 2020)
- e-values (Vovk \& Wang, 2021)

Existing approaches: Two types

(1) Assumes a parametric copula (e.g., Gaussian) and fits it.
! Easily misspecified in real applications. Cannot control type-I error.
Kim \& Ramdas (2020)
$X_{1}, \ldots, X_{n} \sim \mathcal{N}(\mu, \Sigma)$ in \mathbb{R}^{3}.
Single-split statistic for testing $H_{0}: \mu=\mathbf{0}$
$T_{n}:=\frac{\sqrt{n_{2}} \hat{\mu}_{1}^{\top} \hat{\mu}_{2}}{\hat{\mu}_{1}^{\top} \hat{\Sigma}_{2} \hat{\mu}_{1}} \rightarrow_{d} \mathcal{N}(0,1)$ under H_{0}.
! Copula can be complex. No generic approximation.

Null distribution of $\left(T_{n}^{(1)}+\ldots+T_{n}^{(200)}\right) / 200$
(2) Guards against the worst-case copula.
\approx A large body of literature on combining p-values under arbitrary dependence.

- Averaging p-values multiplied by two (Rüschendorf, 1982; Meng, 1994)
- Generalized means (Vovk \& Wang, 2020)
- Quantiles (Meinshausen et al., 2009; DiCiccio et al., 2020)
- Concentration inequalities (DiCiccio et al., 2020)
- Cauchy transformations (Liu \& Xie, 2020)
- e-values (Vovk \& Wang, 2021)

! Very conservative
 actual type-I error $\ll \alpha$, typically

Existing approaches: Two types

(1) Assumes a parametric copula (e.g., Gaussian) and fits it.
! Easily misspecified in real applications. Cannot control type-I error.
Kim \& Ramdas (2020)
$X_{1}, \ldots, X_{n} \sim \mathcal{N}(\mu, \Sigma)$ in \mathbb{R}^{3}.
Single-split statistic for testing $H_{0}: \mu=\mathbf{0}$
$T_{n}:=\frac{\sqrt{n_{2}} \hat{\mu}_{1}^{\top} \hat{\mu}_{2}}{\hat{\mu}_{1}^{\top} \hat{\Sigma}_{2} \hat{\mu}_{1}} \rightarrow_{d} \mathcal{N}(0,1)$ under H_{0}.
! Copula can be complex. No generic approximation.

Null distribution of $\left(T_{n}^{(1)}+\ldots+T_{n}^{(200)}\right) / 200$
(2) Guards against the worst-case copula.
\approx A large body of literature on combining p-values under arbitrary dependence.

- Averaging p-values multiplied by two (Rüschendorf, 1982; Meng, 1994)
- Generalized means (Vovk \& Wang, 2020)
- Quantiles (Meinshausen et al., 2009; DiCiccio et al., 2020)
- Concentration inequalities (DiCiccio et al., 2020)
- Cauchy transformations (Liu \& Xie, 2020)
- e-values (Vovk \& Wang, 2021)
! Very conservative
actual type-I error $\ll \alpha$, typically
\approx Symmetry does not help. (Choi \& Kim, 2022)

Outline

- Setup and main challenge
- Method: Rank-transformed subsampling
- Applications
- Hunt and test
- Improving inference for double machine learning
- Testing no direct effect in a sequentially randomized trial
- Future directions

Approach

Approach

(:3ggregated test: Reject H_{0} when $S_{n}=S\left(T_{n}^{(1)}, \ldots, T_{n}^{(L)}\right) \lessgtr$?

Approach

 Estimate it nonparametrically with subsampling!
: Aggregated test: Reject H_{0} when $S_{n}=S\left(T_{n}^{(1)}, \ldots, T_{n}^{(L)}\right) \lessgtr$?

Approach

 Estimate it nonparametrically with subsampling!
(:3 Aggregated test: Reject H_{0} when $S_{n}=S\left(T_{n}^{(1)}, \ldots, T_{n}^{(L)}\right) \lessgtr$?
(1) Marginal F_{0}
(2) Estimated Copula

Approach

Estimate it nonparametrically with subsampling!
(:) Aggregated test: Reject H_{0} when $S_{n}=S\left(T_{n}^{(1)}, \ldots, T_{n}^{(L)}\right) \lessgtr$?
(2) Estimated Copula $\}\left(\widetilde{T}_{n}^{(1)}, \ldots, \widetilde{T}_{n}^{(L)}\right)$

Approach

Estimate it nonparametrically with subsampling!
(3) Aggregated test: Reject H_{0} when $S_{n}=S\left(T_{n}^{(1)}, \ldots, T_{n}^{(L)}\right) \lessgtr$?
(2) Estimated Copula $\}\left(\widetilde{T}_{n}^{(1)}, \ldots, \widetilde{T}_{n}^{(L)}\right) \xrightarrow{S} \tilde{S}_{n}$

Approach

Estimate it nonparametrically with subsampling!
(3) Aggregated test: Reject H_{0} when $S_{n}=S\left(T_{n}^{(1)}, \ldots, T_{n}^{(L)}\right) \lessgtr \nabla$

$$
\alpha \text { quantile , }
$$

$\left.\begin{array}{r}\text { (1) Marginal } F_{0} \\ \text { (2) Estimated Copula }\end{array}\right\}\left(\widetilde{T}_{n}^{(1)}, \ldots, \widetilde{T}_{n}^{(L)}\right) \xrightarrow{S} \tilde{S}_{n} \ldots="$

Approach

Estimate it nonparametrically with subsampling!
$\left.\begin{array}{r}\text { (1) Marginal } F_{0} \\ \text { (2) Estimated Copula }\end{array}\right\}\left(\widetilde{T}_{n}^{(1)}, \ldots, \widetilde{T}_{n}^{(L)}\right) \xrightarrow{S} \tilde{S}_{n} \ldots$ quantile "
(2) P can be in H_{0} or H_{1}

Rank-transformed subsampling

Rank-transformed subsampling

Rank-transformed subsampling

1. Randomly pick B subsamples of size $m=[n / \log n]$

Rank-transformed subsampling

$\square \square \square \square \square \square \square \square$		
$T_{m}^{(1)}$	$T_{m}^{(2)}$	\cdots
		$T_{m}^{(L)}$

1. Randomly pick B subsamples of size $m=[n / \log n]$
2. Compute $\left(T_{m}^{(1)}, \ldots, T_{m}^{(L)}\right)$ for each subsample

Rank-transformed subsampling

(1)

1. Randomly pick B subsamples of size $m=[n / \log n]$
2. Compute $\left(T_{m}^{(1)}, \ldots, T_{m}^{(L)}\right)$ for each subsample

Rank-transformed subsampling

1. Randomly pick B subsamples of size $m=[n / \log n]$
2. Compute $\left(T_{m}^{(1)}, \ldots, T_{m}^{(L)}\right)$ for each subsample

Rank-transformed subsampling

1. Randomly pick B subsamples of size $m=[n / \log n]$
2. Compute $\left(T_{m}^{(1)}, \ldots, T_{m}^{(L)}\right)$ for each subsample

Rank-transformed subsampling

1. Randomly pick B subsamples of size $m=[n / \log n]$
2. Compute $\left(T_{m}^{(1)}, \ldots, T_{m}^{(L)}\right)$ for each subsample

Rank-transformed subsampling

1. Randomly pick B subsamples of size $m=[n / \log n]$
2. Compute $\left(T_{m}^{(1)}, \ldots, T_{m}^{(L)}\right)$ for each subsample

Rank-transformed subsampling

$T_{m}^{(1)}$	$T_{m}^{(2)}$	$T_{m}^{(L)}$
1.5	-0.8	0.2
-1.0	-0.3	1.9

1. Randomly pick B subsamples of size $m=[n / \log n]$
2. Compute $\left(T_{m}^{(1)}, \ldots, T_{m}^{(L)}\right)$ for each subsample

Rank-transformed subsampling

$\begin{gathered} B \\ \text { rows } \end{gathered}$	$T_{m}^{(1)}$	$T_{m}^{(2)}$	$T_{m}^{(L)}$
	1.5	-0.8	0.2
	-1.0	-0.3	1.9
	:	!	:
	2.7	0.1	3.0

1. Randomly pick B subsamples of size $m=[n / \log n]$
2. Compute
$\left(T_{m}^{(1)}, \ldots, T_{m}^{(L)}\right)$ for each subsample
L columns

Rank-transformed subsampling

$\begin{gathered} B \\ \text { rows } \end{gathered}$	$T_{m}^{(1)}$	$T_{m}^{(2)}$	$T_{m}^{(L)}$
	1.5	-0.8	0.2
	-1.0	-0.3	1.9
	:	\vdots	:
	2.7	0.1	3.0

1. Randomly pick B subsamples of size $m=[n / \log n]$
2. Compute $\left(T_{m}^{(1)}, \ldots, T_{m}^{(L)}\right)$ for each subsample
3. In this $B \times L$ matrix, replace each entry by its rank
L columns

Rank-transformed subsampling

$\begin{gathered} B \\ \text { rows } \end{gathered}$	$T_{m}^{(1)}$	$T_{m}^{(2)}$	$T_{m}^{(L)}$
	933	212	580
	158	380	971
	:	\vdots	\vdots
	990	539	998

1. Randomly pick B subsamples of size $m=[n / \log n]$
2. Compute $\left(T_{m}^{(1)}, \ldots, T_{m}^{(L)}\right)$ for each subsample
3. In this $B \times L$ matrix, replace each entry by its rank

L columns

Rank-transformed subsampling

$\begin{gathered} B \\ \text { rows } \end{gathered}$	$T_{m}^{(1)}$	$T_{m}^{(2)}$	$T_{m}^{(L)}$
	0.993	0.212	0.580
	0.158	0.380	0.971
	:	:	:
	0.990	0.539	0.998

1. Randomly pick B subsamples of size $m=[n / \log n]$
2. Compute $\left(T_{m}^{(1)}, \ldots, T_{m}^{(L)}\right)$ for each subsample
3. In this $B \times L$ matrix, replace each entry by its rank
4. Normalize the ranks (Copula estimate)

L columns

Rank-transformed subsampling

$\begin{gathered} B \\ \text { rows } \end{gathered}$	$\widetilde{T}_{m}^{(1)}$	$\widetilde{T}_{m}^{(2)}$	$\widetilde{T}_{m}^{(L)}$
	1.6	-0.8	0.1
	-1.1	-0.2	1.8
	:	:	\vdots
	2.7	0.2	2.8

1. Randomly pick B subsamples of size $m=[n / \log n]$
L columns

Rank-transformed subsampling

1. Randomly pick B subsamples of size $m=[n / \log n]$
2. Compute $\left(T_{m}^{(1)}, \ldots, T_{m}^{(L)}\right)$ for each subsample
3. In this $B \times L$ matrix, replace each entry by its rank
4. Normalize the ranks (Copula estimate)
5. Apply F_{0}^{-1} entry-wise (Enforce the margin)
6. Aggregate

Rank-transformed subsampling

L columns

1. Randomly pick B subsamples of size $m=[n / \log n]$
2. Compute $\left(T_{m}^{(1)}, \ldots, T_{m}^{(L)}\right)$ for each subsample
3. In this $B \times L$ matrix, replace each entry by its rank
4. Normalize the ranks (Copula estimate)
5. Apply F_{0}^{-1} entry-wise (Enforce the margin)
6. Aggregate
7. Use upper α quantile of \tilde{S}_{n} as critical value

Rank-transformed subsampling: under H_{0}

Rank-transformed subsampling: under H_{0}

$$
L=2, F_{0}=\operatorname{unif}(0,1)
$$

Rank-transformed subsampling: under H_{0}

$L=2, F_{0}=\operatorname{unif}(0,1)$

Rank-transformed subsampling: under H_{0}

$$
\begin{aligned}
& L=2, F_{0}=\operatorname{unif}(0,1) \\
& S=\operatorname{avg}
\end{aligned}
$$

Rank-transformed subsampling: under H_{0}

Rank-transformed subsampling: under H_{0}

Theory: under H_{0}

Theory: under H_{0}

A1. For $P \in H_{0}, T_{n}(X ; \Omega) \rightarrow{ }_{d} F_{0} \in\{\operatorname{unif}(0,1), \mathcal{N}(0,1)\}$ as $n \rightarrow \infty$.

Theory: under H_{0}

A1. For $P \in H_{0}, T_{n}(X ; \Omega) \rightarrow{ }_{d} F_{0} \in\{\operatorname{unif}(0,1), \mathcal{N}(0,1)\}$ as $n \rightarrow \infty$.

Theorem Suppose $S(\cdot)$ is symmetric and Lipschitz. Suppose the aggregated S_{n} has a continuous asymptotic law under H_{0}. Then, under A1, our test is pointwise asymptotically level α.

Theory: under H_{0}

A1. For $P \in H_{0}, T_{n}(X ; \Omega) \rightarrow{ }_{d} F_{0} \in\{$ unif $(0,1), \mathcal{N}(0,1)\}$ as $n \rightarrow \infty$.

Theorem Suppose $S(\cdot)$ is symmetric and Lipschitz. Suppose the aggregated S_{n} has a continuous asymptotic law under H_{0}. Then, under A1, our test is pointwise asymptotically level α.

Further, if T_{n} and S_{n} converge to their respective limit distributions uniformly over H_{0}, then our test is uniformly asymptotic level α.

Rank-transformed subsampling: Local alternative

$$
\begin{aligned}
& L=2, F_{0}=\operatorname{unif}(0,1) \\
& S=\operatorname{avg}
\end{aligned}
$$

Rank-transformed subsampling: Local alternative

$$
\begin{aligned}
& L=2, F_{0}=\operatorname{unif}(0,1) \\
& S=\operatorname{avg}
\end{aligned}
$$

Rank-transformed subsampling: Local alternative

Rank-transformed subsampling: Local alternative

Rank-transformed subsampling: Local alternative

Theory: Local power

Theory: Local power

Theorem (informal) Fix $P_{0} \in H_{0}$.
If the copula of $\left(T_{n}^{(1)}, \ldots, T_{n}^{(L)}\right)$ converges in a locally uniform fashion at P_{0}, then for P_{0} 's local alternatives,

$$
\text { | Power(our test) - Power(oracle test) | } \rightarrow 0,
$$

where the oracle test has access to S_{n} 's null distribution under P_{0}.
For example, when Le Cam's 3rd lemma is applicable to $\left(T_{n}^{(1)}, \ldots, T_{n}^{(L)}\right)$.

Outline

- Setup and main challenge
- Method: Rank-transformed subsampling
- Applications
- Hunt and test
- Improving inference for double machine learning
- Testing no direct effect in a sequentially randomized trial
- Future directions

Hunt and test

Hunt and test

\approx Test hypothesis of the form $H_{0}=\cap_{d} H_{0}(d)$, where each $H_{0}(d)$ is relatively easy to test.

Hunt and test

\approx Test hypothesis of the form $H_{0}=\cap_{d} H_{0}(d)$, where each $H_{0}(d)$ is relatively easy to test.

Hunt and test

\approx Test hypothesis of the form $H_{0}=\cap_{d} H_{0}(d)$, where each $H_{0}(d)$ is relatively easy to test.

Hunt and test

\approx Test hypothesis of the form $H_{0}=\cap_{d} H_{0}(d)$, where each $H_{0}(d)$ is relatively easy to test.
$\stackrel{\circ}{\circ}$

Hunt and test

\approx Test hypothesis of the form $H_{0}=\cap_{d} H_{0}(d)$, where each $H_{0}(d)$ is relatively easy to test.

(1) Use $\square \square \square \square$ to find \hat{d} such that $H_{0}(\hat{d})$ is most likely to be rejected.
(2) Use $\square \square \square \square$ to compute a test statistic for $H_{0}(\hat{d})$ and call it T_{n}.

Hunt and test

\approx Test hypothesis of the form $H_{0}=\cap_{d} H_{0}(d)$, where each $H_{0}(d)$ is relatively easy to test.

! NOT selective inference!
(1) Use
to find \hat{d} such that $H_{0}(\hat{d})$ is most likely to be rejected.
(2) Use \square to compute a test statistic for $H_{0}(\hat{d})$ and call it T_{n}.

Hunt and test

\approx Test hypothesis of the form $H_{0}=\cap_{d} H_{0}(d)$, where each $H_{0}(d)$ is relatively easy to test.

! NOT selective inference!

(1) Use $\square \square \square \square$ to find \hat{d} such that $H_{0}(\hat{d})$ is most likely to be rejected.
(2) Use \square to compute a test statistic for $H_{0}(\hat{d})$ and call it T_{n}.
$X \in \mathbb{R}^{p}$: gene expression of a random cell in the sample.

Hunt and test

\approx Test hypothesis of the form $H_{0}=\cap_{d} H_{0}(d)$, where each $H_{0}(d)$ is relatively easy to test.

! NOT selective inference!

(1) Use $\square \square \square \square$ to find \hat{d} such that $H_{0}(\hat{d})$ is most likely to be rejected.
(2) Use \square to compute a test statistic for $H_{0}(\hat{d})$ and call it T_{n}.
$X \in \mathbb{R}^{p}$: gene expression of a random cell in the sample.
$H_{0}=\{X \sim$ only one subtype $\}$
$=\{X \sim$ unimodal $\} \quad \sim$ very hard

Hunt and test

\approx Test hypothesis of the form $H_{0}=\cap_{d} H_{0}(d)$, where each $H_{0}(d)$ is relatively easy to test.

! NOT selective inference!

(1) Use $\square \square \square \square$ to find \hat{d} such that $H_{0}(\hat{d})$ is most likely to be rejected.
(2) Use \square to compute a test statistic for $H_{0}(\hat{d})$ and call it T_{n}.
$X \in \mathbb{R}^{p}$: gene expression of a random cell in the sample.

$$
\begin{array}{rlrl}
H_{0} & =\{X \sim \text { only one subtype }\} & & \\
& =\{X \sim \text { unimodal }\} & \sim \text { very hard } \\
& =\cap_{d \in \mathbb{R}^{p}}\left\{d^{\top} X \sim \text { unimodal }\right\} & \sim \text { linear unimodality }
\end{array}
$$

Hunt and test

\sim Test hypothesis of the form $H_{0}=\cap_{d} H_{0}(d)$, where each $H_{0}(d)$ is relatively easy to test.

! NOT selective inference!

(1) Use $\square \square \square \square$ to find \hat{d} such that $H_{0}(\hat{d})$ is most likely to be rejected.
(2) Use \square to compute a test statistic for $H_{0}(\hat{d})$ and call it T_{n}.
$X \in \mathbb{R}^{p}$: gene expression of a random cell in the sample.

$$
\begin{array}{rlrl}
H_{0} & =\{X \sim \text { only one subtype }\} & & \\
& =\{X \sim \text { unimodal }\} & & \text { very hard } \\
& =\cap_{d \in \mathbb{R}^{p}}\left\{d^{\top} X \sim \text { unimodal }\right\} & \sim \text { linear unimodality }
\end{array}
$$

(1) Find \hat{d} by running 2-means on $\square \square \square \square$.
(2) Compute $T_{n}:=$ dip test p -value on \square Cheng, M-Y., and Peter Hall. "Calibrating the excess mass and dip tests of modality." JRSS-B (1998)

! Low power

Hunt and test: Detecting cancer subtypes

Simulation in \mathbb{R}^{p}

Hunt and test: Detecting cancer subtypes

Simulation in \mathbb{R}^{p}

Hunt and test: Detecting cancer subtypes

Simulation in \mathbb{R}^{p}

- Rank-transform subsampling maintains the correct level and significantly improves power

Hunt and test: Detecting cancer subtypes

Simulation in \mathbb{R}^{p}

- Rank-transform subsampling maintains the correct level and significantly improves power.

Hunt and test: Detecting cancer subtypes

Simulation in \mathbb{R}^{p}

- Rank-transform subsampling maintains the correct level and significantly improves power
- Adaptive version of the algorithm achieves the better performance between the two choices of S.

Hunt and test: Detecting cancer subtypes

Simulation in \mathbb{R}^{p}

- Rank-transform subsampling maintains the correct level and significantly improves power
- Adaptive version of the algorithm achieves the better performance between the two choices of S.
- Conservatively averaged p -value is not competitive.

Hunt and test: Detecting cancer subtypes

Simulation in \mathbb{R}^{p}

- Rank-transform subsampling maintains the correct level and significantly improves power.
- Adaptive version of the algorithm achieves the better performance between the two choices of S.
- Conservatively averaged p -value is not competitive.
- SigClust: for unit balls, it loses power as p increases; for multivariate t, it does not control type-I error.

Yufeng Liu, David Neil Hayes, Andrew Nobel, and J. S Marron Statistical significance of clustering for high-dimension, low-sample size data Journal of the American Statistical Association (2008) https://CRAN.R-project.org/package=sigclust

Hunt and test: Detecting cancer subtypes

ICGC/TCGA Pan-Cancer dataset

Hunt and test: Detecting cancer subtypes

ICGC/TCGA Pan-Cancer dataset

Hunt and test: Detecting cancer subtypes

ICGC/TCGA Pan-Cancer dataset

Hunt and test: Detecting cancer subtypes

ICGC/TCGA Pan-Cancer dataset

Hunt and test: Detecting cancer subtypes

ICGC/TCGA Pan-Cancer dataset

Other hunt-and-test / data-split procedures

- Testing multiple sample (cox, 1975)
- Split conformal prediction (Lei et al,, 2018; Solari \& Djordjiliović, 2022)
- Goodness-of-fit testing (Janková et al., 2020)
- Conditional (mean) independence testing (Scheidegger et al., 2021; Lundborg et al., 2022)
- Dimension-agnostic inference (Kim \& Ramdas, 2020)

Outline

- Setup and main challenge
- Method: Rank-transformed subsampling
- Applications
- Hunt and test
- Improving inference for double machine learning
- Testing no direct effect of a sequentially randomized trial
- Future directions

Problem 2. DML Std. Error tends to be too small
ω It ignores cross-fold correlation

Each fold defines a "single-split" statistic $T_{n}^{(1)}:=\frac{\sqrt{n / 2}\left(\hat{\tau}_{1}^{(1)}-\tau\right)}{\sigma}$

$$
\begin{aligned}
T_{n}^{(2)} & :=\frac{\sqrt{n / 2}\left(\hat{\tau}^{(2)}-\tau\right)}{\sigma} \\
& \rightarrow{ }_{d} \mathcal{N}(0,1)
\end{aligned}
$$

8 Each fold defines a "single-split" statistic $T_{n}^{(1)}:=\frac{\sqrt{n / 2}\left(\hat{\tau}_{1}^{(1)}-\tau\right)}{\sigma}$

$$
\begin{aligned}
T_{n}^{(2)} & :=\frac{\sqrt{n / 2}\left(\hat{\tau}^{(2)}-\tau\right)}{\sigma} \\
& \rightarrow{ }_{d} \mathcal{N}(0,1)
\end{aligned}
$$

For $\hat{\tau}_{\mathrm{DML}}:=\left(\hat{\tau}^{(1)}+\hat{\tau}^{(2)}\right) / 2$,

$$
\mathrm{DML} \mathrm{CLT}: \quad \frac{\sqrt{n}\left(\hat{\tau}_{\mathrm{DML}}-\tau\right)}{\sigma}=\frac{1}{\sqrt{2}}\left(T_{n}^{(1)}+T_{n}^{(2)}\right) \rightarrow \mathcal{N}(0,1)
$$Under conditions required by DML, between-fold correlation $\rho \rightarrow 0$.

8 Each fold defines a "single-split" statistic $T_{n}^{(1)}:=\frac{\sqrt{n / 2}\left(\hat{\tau}_{1}^{(1)}-\tau\right)}{\sigma}$

$$
\begin{aligned}
T_{n}^{(2)} & :=\frac{\sqrt{n / 2}\left(\hat{\tau}^{(2)}-\tau\right)}{\sigma} \\
& \rightarrow{ }_{d} \mathcal{N}(0,1)
\end{aligned}
$$

For $\hat{\tau}_{\mathrm{DML}}:=\left(\hat{\tau}^{(1)}+\hat{\tau}^{(2)}\right) / 2$,

$$
\mathrm{DML} \mathrm{CLT}: \quad \frac{\sqrt{n}\left(\hat{\tau}_{\mathrm{DML}}-\tau\right)}{\sigma}=\frac{1}{\sqrt{2}}\left(T_{n}^{(1)}+T_{n}^{(2)}\right) \rightarrow \mathcal{N}(0,1)
$$

(:) Under conditions required by DML, between-fold correlation $\rho \rightarrow 0$.
! For finite sample, $\rho>0$.
Std. Error

$$
\begin{array}{cl}
\mathrm{DML} & \sigma / \sqrt{n} \\
\text { Actual } & \sigma \sqrt{1+\rho(L-1)} / \sqrt{n}
\end{array}
$$

Improved DML inference

Improved DML inference

Rank-transformed subsampling automatically accounts for ρ.

Improved DML inference

Rank-transformed subsampling automatically accounts for ρ.
\backsim Can be performed without knowing τ or σ :

$$
\operatorname{rank}\left(T_{m}^{(l)}\right)=\operatorname{rank}\left\{\frac{\sqrt{m / 2}\left(\hat{\tau}_{m}^{(l)}-\tau\right)}{\sigma}\right\}=\operatorname{rank}\left(\hat{\tau}_{m}^{(l)}\right)
$$

Improved DML inference

Rank-transformed subsampling automatically accounts for ρ.
\hookleftarrow Can be performed without knowing τ or σ :

$$
\operatorname{rank}\left(T_{m}^{(l)}\right)=\operatorname{rank}\left\{\frac{\sqrt{m / 2}\left(\hat{\tau}_{m}^{(l)}-\tau\right)}{\sigma}\right\}=\operatorname{rank}\left(\hat{\tau}_{m}^{(l)}\right)
$$

Table 1: Coverage of nominal 95% confidence intervals

method	$n=500$		$n=1000$		$n=2000$	
	$L=2$	$L=5$	$L=2$	$L=5$	$L=2$	$L=5$
$\rho(L-1)$	0.46	0.31	0.36	0.18	0.25	0.14
Corrected	0.94	0.93	0.95	0.95	0.96	0.95
DML	0.86	0.88	0.88	0.92	0.91	0.92

Improved DML inference

Rank-transformed subsampling automatically accounts for ρ.
\backsim Can be performed without knowing τ or σ :

$$
\operatorname{rank}\left(T_{m}^{(l)}\right)=\operatorname{rank}\left\{\frac{\sqrt{m / 2}\left(\hat{\tau}_{m}^{(l)}-\tau\right)}{\sigma}\right\}=\operatorname{rank}\left(\hat{\tau}_{m}^{(l)}\right)
$$

Table 1: Coverage of nominal 95% confidence intervals

| | $n=500$ | | | $n=1000$ | | | $n=2000$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| method | $L=2$ | $L=5$ | | $L=2$ | $L=5$ | | $L=2$ | $L=5$ |
| $\rho(L-1)$ | 0.46 | 0.31 | | 0.36 | 0.18 | | 0.25 | 0.14 |
| Corrected | 0.94 | 0.93 | | 0.95 | 0.95 | | 0.96 | 0.95 |
| DML | 0.86 | 0.88 | | 0.88 | 0.92 | | 0.91 | 0.92 |

V Calibrated Cl's by accounting for correlation.
V Improved replicability by averaging over data splits.

Improved DML inference

Rank-transformed subsampling automatically accounts for ρ.
\backsim Can be performed without knowing τ or σ :

$$
\operatorname{rank}\left(T_{m}^{(l)}\right)=\operatorname{rank}\left\{\frac{\sqrt{m / 2}\left(\hat{\tau}_{m}^{(l)}-\tau\right)}{\sigma}\right\}=\operatorname{rank}\left(\hat{\tau}_{m}^{(l)}\right)
$$

Table 1: Coverage of nominal 95% confidence intervals

method	$n=500$		$n=1000$		$n=2000$	
	$L=2$	$L=5$	$L=2$	$L=5$	$L=2$	$L=5$
$\rho(L-1)$	0.46	0.31	0.36	0.18	0.25	0.14
Corrected	0.94	0.93	0.95	0.95	0.96	0.95
DML	0.86	0.88	0.88	0.92	0.91	0.92

Calibrated Cl's by accounting for correlation.
V Improved replicability by averaging over data splits.

Relieved Bill

Outline

- Setup and main challenge
- Method: Rank-transformed subsampling
- Applications
- Hunt and test
- Improving double machine learning
- Testing no direct effect in a sequentially randomized trial
- Future directions

Sequentially randomized trial

Sequentially randomized trial

Sequentially randomized trial

- SMART trials
(Murphy, 2005; Murphy et al., 2006)

© d3c.isr.umich.edu

Sequentially randomized trial

\author{

- SMART trials
}
(Murphy, 2005; Murphy et al., 2006)

© d3c.isr.umich.edu
- Observational / follow-up studies

HIV studies: A_{1}, A_{2} : antiretroviral therapy; L, Y : CD4 cell counts

Sharp null of no direct effect

Sharp null of no direct effect

τ : the direct effect of A_{1} on Y (i.e., not through A_{2}).

Sharp null of no direct effect

health status
τ : the direct effect of A_{1} on Y (i.e., not through A_{2}).

Sharp null hypothesis $H_{0}: \tau_{i} \equiv 0$ for every individual i.

* More precisely, $Y_{i}(1,0)-Y_{i}(0,0) \equiv 0$ and $Y_{i}(1,1)-Y_{i}(0,1)=0$ for every i. $Y_{i}\left(a_{1}, a_{2}\right)$ is the potential outcome had subject i taken treatments $\left(a_{1}, a_{2}\right)$.

Sharp null of no direct effect

$$
\tau \text { : the direct effect of } A_{1} \text { on } Y \text { (i.e., not through } A_{2} \text {). }
$$

Sharp null hypothesis $H_{0}: \tau_{i} \equiv 0$ for every individual i.

* More precisely, $Y_{i}(1,0)-Y_{i}(0,0) \equiv 0$ and $Y_{i}(1,1)-Y_{i}(0,1)=0$ for every i. $Y_{i}\left(a_{1}, a_{2}\right)$ is the potential outcome had subject i taken treatments $\left(a_{1}, a_{2}\right)$.

Sharp null of no direct effect

$$
\tau \text { : the direct effect of } A_{1} \text { on } Y \text { (i.e., not through } A_{2} \text {). }
$$

Sharp null hypothesis $H_{0}: \tau_{i} \equiv 0$ for every individual i.

* More precisely, $Y_{i}(1,0)-Y_{i}(0,0) \equiv 0$ and $Y_{i}(1,1)-Y_{i}(0,1)=0$ for every i. $Y_{i}\left(a_{1}, a_{2}\right)$ is the potential outcome had subject i taken treatments $\left(a_{1}, a_{2}\right)$.
(:3) H_{0} cannot be formulated as an independence or conditional independence.

Testing the sharp null

Sequentially randomized trial under the sharp null

Testing the sharp null

Sequentially randomized trial under the sharp null

Completely randomized trial under the sharp null

Testing the sharp null

Testing the sharp null

Sequentially randomized trial under the sharp null

$d Q / d P=q\left(A_{2}\right) / p\left(A_{2} \mid A_{1}, L\right)$
Completely randomized trial under the sharp null
$P \longrightarrow q\left(A_{2}\right)$ is an arbitrary (positive) distribution over $A_{2} \longrightarrow Q$

Sharp null $H_{0}: A_{1} \Perp Y(Q), d Q / d P=q\left(A_{2}\right) / p\left(A_{2} \mid A_{1}, L\right)$.

Testing the sharp null

$$
\text { Sharp null } H_{0}: A_{1} \Perp Y(Q), d Q / d P=q\left(A_{2}\right) / p\left(A_{2} \mid A_{1}, L\right) .
$$

ω This is a generalized / "dormant" independence, aka. Verma constraint on P. Robins (1986, 1999), Verma \& Pearl (1990), Wermuth \& Cox (2008), Richardson et al. (2017)

An instance of "distribution shift".

Testing generalized (conditional) independence

Testing generalized (conditional) independence

A lot of recent progress in independence / conditional independence testing.
Independence: kernel embedding (Gretton et al., 2005, 2007), rank correlation coefficients (Bergsma \& Dassios, 2014; Drton et al., 2020; Shi et

Conditional

 al., 2021), optimal rates via U-statistics (Berrett et al., 2021), optimal transport (Liu et al., 2022), etc.kernel method (Zhang et al., 2011), generalized covariance measure (Shah \& Peters, 2020; Scheidegger et al., 2022), copula
Independence: (Petersen \& Hansen, 2021), projected covariance (Lundborg et al., 2022), model-X (Candès et al., 2018; Berrett et al., 2020), etc.

Testing generalized (conditional) independence

A lot of recent progress in independence / conditional independence testing.
Independence: kernel embedding (Gretton et al., 2005, 2007), rank correlation coefficients (Bergsma \& Dassios, 2014; Drton et al., 2020; Shi et
Conditional al., 2021), optimal rates via U-statistics (Berrett et al., 2021), optimal transport (Liu et al., 2022), etc.
kernel method (Zhang et al., 2011), generalized covariance measure (Shah \& Peters, 2020; Scheidegger et al., 2022), copula
Independence: (Petersen \& Hansen, 2021), projected covariance (Lundborg et al., 2022), model-X (Candès et al., 2018; Berrett et al., 2020), etc.

8 We can simulate data from Q.

Testing generalized (conditional) independence

A lot of recent progress in independence / conditional independence testing.
Independence: kernel embedding (Gretton et al., 2005, 2007), rank correlation coefficients (Bergsma \& Dassios, 2014; Drton et al., 2020; Shi et

Conditional

 al., 2021), optimal rates via U-statistics (Berrett et al., 2021), optimal transport (Liu et al., 2022), etc.kernel method (Zhang et al., 2011), generalized covariance measure (Shah \& Peters, 2020; Scheidegger et al., 2022), copula
Independence: (Petersen \& Hansen, 2021), projected covariance (Lundborg et al., 2022), model-X (Candès et al., 2018; Berrett et al., 2020), etc.

8 We can simulate data from Q.

P

Testing generalized (conditional) independence

A lot of recent progress in independence / conditional independence testing.
Independence: kernel embedding (Gretton et al., 2005, 2007), rank correlation coefficients (Bergsma \& Dassios, 2014; Drton et al., 2020; Shi et

Conditional

 al., 2021), optimal rates via U-statistics (Berrett et al., 2021), optimal transport (Liu et al., 2022), etc.kernel method (Zhang et al., 2011), generalized covariance measure (Shah \& Peters, 2020; Scheidegger et al., 2022), copula
Independence: (Petersen \& Hansen, 2021), projected covariance (Lundborg et al., 2022), model-X (Candès et al., 2018; Berrett et al., 2020), etc.

8 We can simulate data from Q.

O-9

Rejection Sample /

Testing generalized (conditional) independence

A lot of recent progress in independence / conditional independence testing.
Independence: kernel embedding (Gretton et al., 2005, 2007), rank correlation coefficients (Bergsma \& Dassios, 2014; Drton et al., 2020; Shi et

Conditional

 al., 2021), optimal rates via U-statistics (Berrett et al., 2021), optimal transport (Liu et al., 2022), etc.kernel method (Zhang et al., 2011), generalized covariance measure (Shah \& Peters, 2020; Scheidegger et al., 2022), copula
Independence: (Petersen \& Hansen, 2021), projected covariance (Lundborg et al., 2022), model-X (Candès et al., 2018; Berrett et al., 2020), etc.
∇ We can simulate data from Q.

Testing generalized (conditional) independence

A lot of recent progress in independence / conditional independence testing.
Independence: kernel embedding (Gretton et al., 2005, 2007), rank correlation coefficients (Bergsma \& Dassios, 2014; Drton et al., 2020; Shi et

Conditional

 al., 2021), optimal rates via U-statistics (Berrett et al., 2021), optimal transport (Liu et al., 2022), etc.kernel method (Zhang et al., 2011), generalized covariance measure (Shah \& Peters, 2020; Scheidegger et al., 2022), copula
Independence: (Petersen \& Hansen, 2021), projected covariance (Lundborg et al., 2022), model-X (Candès et al., 2018; Berrett et al., 2020), etc.

8 We can simulate data from Q

	Need re-calibration	Reduced sample size	Randomized
Sampling	No	Yes	Yes
Inverse probability weighting (IPW)	Yes	No	No

Simulation: Linear SEM

Simulation: Linear SEM

$\operatorname{cov}_{Q}\left(A_{1}, Y\right)=0 \Longleftrightarrow H_{0}$ holds

Simulation: Linear SEM

(1) Rej. Sample + Permutation

Simulation: Linear SEM

$\operatorname{cov}_{Q}\left(A_{1}, Y\right)=0 \Longleftrightarrow H_{0}$ holds
(1) Rej. Sample + Permutation
$\square \square \square \square \square \square \square$

Simulation: Linear SEM

$\operatorname{cov}_{Q}\left(A_{1}, Y\right)=0 \Longleftrightarrow H_{0}$ holds
(1) Rej. Sample + Permutation

Simulation: Linear SEM

$\operatorname{cov}_{Q}\left(A_{1}, Y\right)=0 \Longleftrightarrow H_{0}$ holds
(1) Rej. Sample + Permutation
$\square \square \square \square \square \square \square \underset{\rho}{\square} \square \square \square Q / d P \mathrm{Rejection} \mathrm{Sample} \square \square \square \longrightarrow T_{n}:=$ Perm. p-value of $\operatorname{cov}_{Q}\left(A_{1}, Y\right)$

Simulation: Linear SEM

$\operatorname{cov}_{Q}\left(A_{1}, Y\right)=0 \Longleftrightarrow H_{0}$ holds
(1) Rej. Sample + Permutation

Simulation: Linear SEM

$\operatorname{cov}_{Q}\left(A_{1}, Y\right)=0 \Longleftrightarrow H_{0}$ holds
(1) Rej. Sample + Permutation

Simulation: Linear SEM

$\operatorname{cov}_{Q}\left(A_{1}, Y\right)=0 \Longleftrightarrow H_{0}$ holds
(1) Rej. Sample + Permutation

(2) IPW for $\operatorname{cov}_{Q}\left(A_{1}, Y\right)$ (Robins, 1999)

$$
Z_{i}:=\frac{Y_{i}\left(A_{1, i}-\mathbb{E} A_{1}\right)}{P\left(A_{2, i} \mid L_{i}, A_{1, i}\right)}, \quad \chi_{n}:=\frac{\sum_{i} Z_{i}}{\sqrt{\sum_{i} Z_{i}^{2}}} \rightarrow_{d} \mathscr{N}(0,1) .
$$

Theme so far

Theme so far

$$
\text { "Single-split" } T_{n}
$$

Theme so far

$$
\begin{gathered}
\text { "Single-split" } T_{n} \text { ! High conditional variability } \text { ! Low power } \\
\text { Existing Test } \xrightarrow[\text { Sampling }]{\text { Data Splitting } \stackrel{\text { OOB }}{\longrightarrow}} \text { New Problem }
\end{gathered}
$$

Theme so far

Meta-algorithm: Rank-transformed Subsampling

Outline

- Setup and main challenge
- Method: Rank-transformed subsampling
- Applications
- Hunt and test
- Improving double machine learning
- Testing no direct effect of a sequentially randomized trial
- Future directions

Harness extra randomness

\% 0
Randomize De-randomize
Data \longrightarrow Analysis \longrightarrow Result

Harness extra randomness

- 0

Randomize De-randomize
Data \longrightarrow Analysis \longrightarrow Result
\backsim Flexible goodness-of-fit
e.g., quantile regression

Harness extra randomness

- 0

Randomize De-randomize
Data \longrightarrow Analysis \longrightarrow Result
\approx Flexible goodness-of-fit
e.g., quantile regression
\backsim Missing data / imputation

Harness extra randomness

\% 0
Randomize De-randomize
Data \longrightarrow Analysis \longrightarrow Result
\backsim Flexible goodness-of-fit
e.g., quantile regression
\approx Missing data / imputation
\leftarrow Random projection

Harness extra randomness

\approx Flexible goodness-of-fit
e.g., quantile regression
\backsim Missing data / imputation
\sim Random projection
\sim Causal inference \& causal discovery

- Observed distribution \rightarrow Intervened distribution

Empowering causal discovery

	Gene 1	Gene 2	Gene 3	..
Cell 1	10	10	0	
Cell 2	0	15	4	
Cell 3	600	0	20	
\vdots				

Empowering causal discovery

(:) State of the art: cannot utilize generalized conditional independence.

Empowering causal discovery

(:) State of the art: cannot utilize generalized conditional independence.
∇ Generalized conditional independence can be very informative about the graph!

Empowering causal discovery

(:) State of the art: cannot utilize generalized conditional independence.
∇ Generalized conditional independence can be very informative about the graph!

: Uniquely identified (from ~30,000 possibilities) from one single generalized conditional independence constraint!

Robins. Interview with Jamie Robins. Observational Studies (2022).

Harness extra randomness

\approx Flexible goodness-of-fit
e.g., quantile regression
\backsim Missing data / imputation
\sim Random projection
\sim Causal inference \& causal discovery

- Observed distribution \rightarrow Intervened distribution

Harness extra randomness

\approx Flexible goodness-of-fit
e.g., quantile regression
\backsim Missing data / imputation
\approx Random projection
\leftarrow Causal inference \& causal discovery

- Observed distribution \rightarrow Intervened distribution
: How much power can we hope to extract?

Harness extra randomness

\approx Flexible goodness-of-fit
e.g., quantile regression
\approx Missing data / imputation
\& Random projection
\leftarrow Causal inference \& causal discovery

- Observed distribution \rightarrow Intervened distribution
: How much power can we hope to extract?
(2) Replicability: computational mes statistical

Multiple aggregations: Adaptive algorithm

Multiple aggregations: Adaptive algorithm

$$
\begin{array}{ccccccc}
T_{n}^{(1)} & T_{n}^{(2)} & T_{n}^{(3)} & T_{n}^{(4)} & \cdots & T_{n}^{(L)} & : \\
* & * * & \cdot & * & & * & S=\operatorname{avg} \nabla \\
\hline . & & & * * * & & & S=\min \nabla
\end{array}
$$

Multiple aggregations: Adaptive algorithm

$$
\begin{array}{ccccccc}
T_{n}^{(1)} & T_{n}^{(2)} & T_{n}^{(3)} & T_{n}^{(4)} & \cdots & T_{n}^{(L)} & \% \\
* & { }^{* *} & \cdot & * & & * & S=\operatorname{avg} \nabla \\
\hline \cdot & & & { }^{* * *} & & & S=\min \nabla
\end{array}
$$

8 Allow the user to specify S^{1}, \ldots, S^{W}

Multiple aggregations: Adaptive algorithm

$$
\begin{array}{ccccccc}
T_{n}^{(1)} & T_{n}^{(2)} & T_{n}^{(3)} & T_{n}^{(4)} & \cdots & T_{n}^{(L)} & : \\
* & * * & \cdot & * & & * & S=\operatorname{avg} \nabla \\
\hline . & & & * * * & & & S=\min \nabla
\end{array}
$$

$\widetilde{T}_{m}^{(1)}$	$\widetilde{T}_{m}^{(2)}$	\ldots	$\widetilde{T}_{m}^{(L)}$
1.6	-0.8		0.1
-1.1	-0.2		1.8
\vdots	\vdots		\vdots
2.7	0.2		

Observed	$T_{n}^{(1)}$	$T_{n}^{(2)}$	\ldots	$T_{n}^{(L)}$
	2.1	-1.2		0.3

Multiple aggregations: Adaptive algorithm

$\widetilde{T}_{m}^{(1)}$	$\widetilde{T}_{m}^{(2)}$	\ldots	$\widetilde{T}_{m}^{(L)}$
1.6	-0.8		0.1
-1.1	-0.2		1.8
\vdots	\vdots		
2.7	0.2		

Observed	$T_{n}^{(1)}$	$T_{n}^{(2)}$	\ldots
2.1	-1.2		$T_{n}^{(L)}$
		0.3	

8 Allow the user to specify S^{1}, \ldots, S^{W}

Multiple aggregations: Adaptive algorithm

$T_{n}^{(1)}$	$T_{n}^{(2)}$	$T_{n}^{(3)}$	$T_{n}^{(4)}$	\cdots	$T_{n}^{(L)}$:
$*$	${ }^{* *}$	\cdot	$*$		$*$	$S=\operatorname{avg} \nabla$
\cdot			$* * *$			$S=\min \nabla$

$\widetilde{T}_{m}^{(1)}$	$\widetilde{T}_{m}^{(2)}$	\ldots
1.6	-0.8	
-1.1	-0.2	
\vdots	\vdots	
2.7	0.2	

Observed	$T_{n}^{(1)}$	$T_{n}^{(2)}$	\ldots
2.1	-1.2		$T_{n}^{(L)}$
			0.3

Multiple aggregations: Adaptive algorithm

$$
\begin{array}{ccccccc}
T_{n}^{(1)} & T_{n}^{(2)} & T_{n}^{(3)} & T_{n}^{(4)} & \cdots & T_{n}^{(L)} & : \tag{2}\\
\star & *_{*} & \cdot & * & & * & S=\operatorname{avg} \nabla \\
\hline \cdot & & & * * * & & & S=\min \nabla
\end{array}
$$

$\widetilde{T}_{m}^{(1)}$	$\widetilde{T}_{m}^{(2)}$	\ldots
1.6	-0.8	
-1.1	-0.2	
\vdots	\vdots	
2.7	0.2	

\tilde{S}_{n}^{1}
200
77
\vdots
431

\tilde{S}_{n}^{2}
142
33
\vdots
460

\tilde{S}_{n}^{W}
289
260
\vdots
12

	Observed	$T_{n}^{(1)}$	$T_{n}^{(2)}$
2.1	-1.2	\ldots	$T_{n}^{(L)}$

S_{n}^{1}
489

S_{n}^{2}
281

S_{n}^{W}
32

Multiple aggregations: Adaptive algorithm

> | $T_{n}^{(1)}$ | $T_{n}^{(2)}$ | $T_{n}^{(3)}$ | $T_{n}^{(4)}$ | \cdots | $T_{n}^{(L)}$ | $*$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $*$ | $* *$ | \cdot | $*$ | | $*$ | $S=\operatorname{avg} \nabla$ |
| . | | | $* * *$ | | $S=\min \nabla$ | |

$\widetilde{T}_{m}^{(1)}$	$\widetilde{T}_{m}^{(2)}$	\ldots	$\widetilde{T}_{m}^{(L)}$
1.6	-0.8		0.1
-1.1	-0.2		1.8
\vdots	\vdots		\vdots
2.7	0.2		

Observed	$T_{n}^{(1)}$	$T_{n}^{(2)}$	\ldots	$T_{n}^{(L)}$
	-1.2		0.3	

8 Allow the user to specify S^{1}, \ldots, S^{W}
min

Hunt and test: Flexible goodness-of-fit

Hunt and test: Flexible goodness-of-fit

Linear model $Y \sim \beta_{0}+\beta_{1} X_{1}+\ldots+\beta_{p} X_{p}$

Hunt and test: Flexible goodness-of-fit

Linear model $Y \sim \beta_{0}+\beta_{1} X_{1}+\ldots+\beta_{p} X_{p}$
Consider introducing a new covariate $X_{p+1}:=\xi(X)$ for as a non-linear $\xi(\cdot)$.

Hunt and test: Flexible goodness-of-fit

Linear model $Y \sim \beta_{0}+\beta_{1} X_{1}+\ldots+\beta_{p} X_{p}$
Consider introducing a new covariate $X_{p+1}:=\xi(X)$ for as a non-linear $\xi(\cdot)$.
8 If linear model is well-specified, then the should have $\beta_{p+1}=0$ in

$$
Y \sim \beta_{0}+\beta_{1} X_{1}+\ldots+\beta_{p} X_{p}+\beta_{p+1} X_{p+1}
$$

Hunt and test: Flexible goodness-of-fit

Linear model $Y \sim \beta_{0}+\beta_{1} X_{1}+\ldots+\beta_{p} X_{p}$
Consider introducing a new covariate $X_{p+1}:=\xi(X)$ for as a non-linear $\xi(\cdot)$.
8 If linear model is well-specified, then the should have $\beta_{p+1}=0$ in

$$
Y \sim \beta_{0}+\beta_{1} X_{1}+\ldots+\beta_{p} X_{p}+\beta_{p+1} X_{p+1}
$$

\sim Test $\cap_{\xi}\left\{H_{0}(\xi): \beta_{p+1}=0\right\}$.

Hunt and test: Flexible goodness-of-fit

Linear model $Y \sim \beta_{0}+\beta_{1} X_{1}+\ldots+\beta_{p} X_{p}$
Consider introducing a new covariate $X_{p+1}:=\xi(X)$ for as a non-linear $\xi(\cdot)$.
∇ If linear model is well-specified, then the should have $\beta_{p+1}=0$ in

$$
Y \sim \beta_{0}+\beta_{1} X_{1}+\ldots+\beta_{p} X_{p}+\beta_{p+1} X_{p+1} .
$$

\approx Test $\cap_{\xi}\left\{H_{0}(\xi): \beta_{p+1}=0\right\}$.

Hunt and test: Flexible goodness-of-fit

Linear model $Y \sim \beta_{0}+\beta_{1} X_{1}+\ldots+\beta_{p} X_{p}$
Consider introducing a new covariate $X_{p+1}:=\xi(X)$ for as a non-linear $\xi(\cdot)$.
∇ If linear model is well-specified, then the should have $\beta_{p+1}=0$ in

$$
Y \sim \beta_{0}+\beta_{1} X_{1}+\ldots+\beta_{p} X_{p}+\beta_{p+1} X_{p+1} .
$$

\approx Test $\cap_{\xi}\left\{H_{0}(\xi): \beta_{p+1}=0\right\}$.

8

Hunt and test: Flexible goodness-of-fit

Linear model $Y \sim \beta_{0}+\beta_{1} X_{1}+\ldots+\beta_{p} X_{p}$
Consider introducing a new covariate $X_{p+1}:=\xi(X)$ for as a non-linear $\xi(\cdot)$.
∇ If linear model is well-specified, then the should have $\beta_{p+1}=0$ in

$$
Y \sim \beta_{0}+\beta_{1} X_{1}+\ldots+\beta_{p} X_{p}+\beta_{p+1} X_{p+1} .
$$

\approx Test $\cap_{\xi}\left\{H_{0}(\xi): \beta_{p+1}=0\right\}$.

(1) Use \square to find $\hat{\xi}$ such that $X_{p+1}=\xi(X)$ is likely to be "significant".

Hunt and test: Flexible goodness-of-fit

Linear model $Y \sim \beta_{0}+\beta_{1} X_{1}+\ldots+\beta_{p} X_{p}$
Consider introducing a new covariate $X_{p+1}:=\xi(X)$ for as a non-linear $\xi(\cdot)$.
∇ If linear model is well-specified, then the should have $\beta_{p+1}=0$ in

$$
Y \sim \beta_{0}+\beta_{1} X_{1}+\ldots+\beta_{p} X_{p}+\beta_{p+1} X_{p+1} .
$$

\approx Test $\cap_{\xi}\left\{H_{0}(\xi): \beta_{p+1}=0\right\}$.

(1) Use $\square \square \square$ to find $\hat{\xi}$ such that $X_{p+1}=\xi(X)$ is likely to be "significant".
(2) Use $\square \square \square \square$ to compute a test statistic for $\beta_{p+1}=0$.
b Use any existing device for parameter inference.

Hunt and test: Flexible goodness-of-fit

Linear model $Y \sim \beta_{0}+\beta_{1} X_{1}+\ldots+\beta_{p} X_{p}$
Consider introducing a new covariate $X_{p+1}:=\xi(X)$ for as a non-linear $\xi(\cdot)$.
∇ If linear model is well-specified, then the should have $\beta_{p+1}=0$ in

$$
Y \sim \beta_{0}+\beta_{1} X_{1}+\ldots+\beta_{p} X_{p}+\beta_{p+1} X_{p+1} .
$$

\approx Test $\cap_{\xi}\left\{H_{0}(\xi): \beta_{p+1}=0\right\}$.

(1) Use $\square \square \square$ to find $\hat{\xi}$ such that $X_{p+1}=\xi(X)$ is likely to be "significant".
(2) Use $\square \square \square \square$ to compute a test statistic for $\beta_{p+1}=0$.
b Use any existing device for parameter inference.
2. How to find $\hat{\xi}$?

Hunt and test: Flexible goodness-of-fit

Linear model $Y \sim \beta_{0}+\beta_{1} X_{1}+\ldots+\beta_{p} X_{p}$
Consider introducing a new covariate $X_{p+1}:=\xi(X)$ for as a non-linear $\xi(\cdot)$.
∇ If linear model is well-specified, then the should have $\beta_{p+1}=0$ in

$$
Y \sim \beta_{0}+\beta_{1} X_{1}+\ldots+\beta_{p} X_{p}+\beta_{p+1} X_{p+1} .
$$

\sim Test $\cap_{\xi}\left\{H_{0}(\xi): \beta_{p+1}=0\right\}$.

(1) Use $\square \square \square$ to find $\hat{\xi}$ such that $X_{p+1}=\xi(X)$ is likely to be "significant".
(2) Use $\square \square \square \square$ to compute a test statistic for $\beta_{p+1}=0$.
\& Use any existing device for parameter inference.
How to find $\hat{\xi}$?

२ Gradient boosting!

Jerome H. Friedman. Greedy function approximation: a gradient boosting machine.

Hunt and test: Flexible goodness-of-fit

Regression: $\min \mathbb{E} l\left(Y-\beta^{\top} X\right)$ for an arbitrary loss function $l(\cdot)$.

Hunt and test: Flexible goodness-of-fit

Regression: $\min \mathbb{E} l\left(Y-\beta^{\top} X\right)$ for an arbitrary loss function $l(\cdot)$.
Fitted $Y \sim \hat{\beta}^{\top} X$. With new covariate X_{p+1},

$$
\sum_{i} l\left(Y_{i}-\hat{\beta}^{\top} X_{i}-\beta_{p+1} X_{i, p+1}\right) \approx \sum_{i} l\left(Y_{i}-\hat{\beta}^{\top} X_{i}\right)-\beta_{i} \sum_{i} l^{\prime}\left(Y_{i}-\hat{\beta}^{\top} X_{i}\right) X_{i, p+1}
$$

Hunt and test: Flexible goodness-of-fit

Regression: $\min \mathbb{E} l\left(Y-\beta^{\top} X\right)$ for an arbitrary loss function $l(\cdot)$.
Fitted $Y \sim \hat{\beta}^{\top} X$. With new covariate X_{p+1},

$$
\sum_{i} l\left(Y_{i}-\hat{\beta}^{\top} X_{i}-\beta_{p+1} X_{i, p+1}\right) \approx \sum_{i} l\left(Y_{i}-\hat{\beta}^{\top} X_{i}\right)-\beta_{i} \sum_{i} l^{\prime}\left(Y_{i}-\hat{\beta}^{\top} X_{i}\right) X_{i, p+1}
$$

(1) On $\square \square \square \square$: Train any ML algorithm $\hat{\xi}$ to predict $l^{\prime}($ resid) from X.

Hunt and test: Flexible goodness-of-fit

Regression: $\min \mathbb{E} l\left(Y-\beta^{\top} X\right)$ for an arbitrary loss function $l(\cdot)$.
Fitted $Y \sim \hat{\beta}^{\top} X$. With new covariate X_{p+1},

$$
\sum_{i} l\left(Y_{i}-\hat{\beta}^{\top} X_{i}-\beta_{p+1} X_{i, p+1}\right) \approx \sum_{i} l\left(Y_{i}-\hat{\beta}^{\top} X_{i}\right)-\beta_{i} \sum_{i} l^{\prime}\left(Y_{i}-\hat{\beta}^{\top} X_{i}\right) X_{i, p+1}
$$

(1) On $\square \square \square \square$: Train any ML algorithm $\hat{\xi}$ to predict $l^{\prime}($ resid) from X.
(2) On $\square \square \square \square$: Compute statistic for testing $\beta_{p+1}=0$ in $Y \sim \beta^{\top} X+\beta_{p+1} \hat{\xi}(X)$.

Hunt and test: Flexible goodness-of-fit

Hunt and test: Flexible goodness-of-fit

Quantile regression

Hunt and test: Flexible goodness-of-fit

Quantile regression

1. Linear model is widely used.

Hunt and test: Flexible goodness-of-fit

Quantile regression

1. Linear model is widely used.
2. Developing goodness/lack-of-fit test is difficult.
e.g., Zheng (1998), Horowitz \& Spokoiny (2002), He \& Zhu (2003),

Escanciano and Velasco (2010), Escanciano \& Goh (2014).
(1) Asymptotic theory of certain residual statistics/processes.
(2) Performance deteriorates when p is moderate or large.

Hunt and test: Flexible goodness-of-fit

Quantile regression

1. Linear model is widely used.
2. Developing goodness/lack-of-fit test is difficult.
e.g., Zheng (1998), Horowitz \& Spokoiny (2002), He \& Zhu (2003),

Escanciano and Velasco (2010), Escanciano \& Goh (2014).
(1) Asymptotic theory of certain residual statistics/processes.
(2) Performance deteriorates when p is moderate or large.
3. Moderate/large p : active research.
e.g., Conde-Amboage et al. (2015), Dong et al. (2019).

Hunt and test: Flexible goodness-of-fit

Quantile regression

1. Linear model is widely used.
2. Developing goodness/lack-of-fit test is difficult.
e.g., Zheng (1998), Horowitz \& Spokoiny (2002), He \& Zhu (2003),

Escanciano and Velasco (2010), Escanciano \& Goh (2014).
(1) Asymptotic theory of certain residual statistics/processes.
(2) Performance deteriorates when p is moderate or large.
3. Moderate/large p : active research.
e.g., Conde-Amboage et al. (2015), Dong et al. (2019),

$\hat{\xi}$: random forest classifier sign(resid) $\sim X$.
T_{n} : standard " t -value" from quantreg.

Hunt and test: Flexible goodness-of-fit

Quantile regression

1. Linear model is widely used.
2. Developing goodness/lack-of-fit test is difficult.
e.g., Zheng (1998), Horowitz \& Spokoiny (2002), He \& Zhu (2003), Escanciano and Velasco (2010), Escanciano \& Goh (2014).
(1) Asymptotic theory of certain residual statistics/processes.
(2) Performance deteriorates when p is moderate or large.
3. Moderate/large p : active research.
e.g., Conde-Amboage et al. (2015), Dong et al. (2019).

$\hat{\xi}$: random forest classifier sign(resid) $\sim X$.
T_{n} : standard "t-value" from quantreg.

$$
\tau=0.5 \text { (median) }
$$

Hunt and test: Flexible goodness-of-fit

Quantile regression

$$
\tau=0.5 \text { (median) }
$$

1. Linear model is widely used.
2. Developing goodness/lack-of-fit test is difficult.
e.g., Zheng (1998), Horowitz \& Spokoiny (2002), He \& Zhu (2003), Escanciano and Velasco (2010), Escanciano \& Goh (2014).
(1) Asymptotic theory of certain residual statistics/processes.
(2) Performance deteriorates when p is moderate or large.
3. Moderate/large p : active research.
e.g., Conde-Amboage et al. (2015), Dong et al. (2019).

$\hat{\xi}$: random forest classifier sign(resid) $\sim X$.
T_{n} : standard "t-value" from quantreg.

Chen Dong, Guodong Li, and Xingdong Feng
Lack-of-fit tests for quantile regression models.
Journal of the Royal Statistical Society: Series B (2019).

