Harnessing Extra Randomness Replicability, Flexibility & Causality

F. Richard Guo Statistical Laboratory, University of Cambridge

Feb, 2023 Based on joint work w/ Rajen Shah

Organic solvents such as

Methylene Chloride

are widely used in the food industry.

© www.compoundchem.com

Methylene Chloride

are widely used in the food industry.

© www.compoundchem.com

Output of the procedure is a random function of data.

Data

Output of the procedure is a random function of data.

Data

Extra randomness

Output of the procedure is a random function of data.

Data

Extra randomness

Randomly divide iid data into several parts for different purposes.

 Data splitting Randomly divide iid data into several parts for different purposes.

iid data points

Randomly divide iid data into several parts for different purposes.

iid data points

parts for different purposes.

iid data points

iid data points

Random imputation

1. Though useful, randomized procedures have serious drawbacks.

2. Present a general framework to resolve these drawbacks.

1. Though useful, randomized procedures have serious drawbacks.

Agenda

- 1. Though useful, randomized procedures have serious drawbacks.
- 2. Present a general framework to resolve these drawbacks.
- 3. Harness extra randomness for many great applications!

Dilemma of data splitting

7

 \leftarrow Doubly robust estimation of τ requires fitting two nuisance functions:

$$\eta_1 = \mathbb{P}(A \mid \mathbf{X})$$
$$\eta_2 = \mathbb{E}[Y \mid A, \mathbf{X}]$$

unemployment duration Y

(van der Laan & Rose, 2011; Newey and Robins, 2018; Chernozhukov et al., 2018; Díaz, 2020; Kennedy, 2022)

Targeted / Double ML: permit using flexible ML tools to estimate η_1, η_2 . \leftarrow Use data splitting / cross fitting to control bias from overfitting $\hat{\eta}_1, \hat{\eta}_2$.

(van der Laan & Rose, 2011; Newey and Robins, 2018; Chernozhukov et al., 2018; Díaz, 2020; Kennedy, 2022)

Targeted / Double ML: permit using flexible ML tools to estimate η_1, η_2 . \leftarrow Use data splitting / cross fitting to control bias from overfitting $\hat{\eta}_1, \hat{\eta}_2$.

> set.seed(42)

		t.seed(42) l\$fit()		
ta	au	Estimate. -0.1	Std. En 0.035	r

rror t value Pr(>|t|) -2.86 0.004 **

	t.seed(42) l\$fit()	
tau	Estimate. -0.1	Std. Er 0.035
	t.seed(43) l\$fit()	
tau	Estimate. -0.06	Std. Er 0.035

rror t value Pr(>|t|) -2.86 0.004 **

rror t value Pr(>|t|) -1.71 0.08 .

	t.seed(42) l\$fit()	
tau	Estimate. -0.1	Std. Er 0.035
	t.seed(43) l\$fit()	
tau	Estimate. -0.06	Std. Er 0.035

>	se	t.seed(44)		
>	dm	l\$fit()		
		Estimate.	Std.	Er
ta	au	-0.07	0.03	7

rror t value Pr(>|t|) -2.86 **0.004** **

rror t value Pr(>|t|) -1.71 0.08 .

rror t value Pr(>|t|) -1.89 0.06 .

We find a significant negative effect* ($\hat{\tau} = -0.1$, p-value=0.004)....

* To replicate my analysis, please use "set.seed(42)" (my lucky number).

* To replicate my analysis, please use "set.seed(42)" (my lucky number).

Reviewer:

"To replicate, why must I use your lucky number?"

We find a significant negative effect* ($\hat{\tau} = -0.1$, p-value=0.004)....

* To replicate my analysis, please use "set.seed(42)" (my lucky number).

Reviewer:

"To replicate, why must I use your lucky number?"

"How do I know you did not fish for 42?"

We find a significant negative effect* ($\hat{\tau} = -0.1$, p-value=0.004)....

Kidney tumor

Is there a new subtype of kidney cancer cells?

Kidney tumor

	Gene 1	Gene 2	Gene 3	
Cell 1	10	10	0	
Cell 2	0	15	4	
Cell 3	600	0	20	
:				

Single-cell RNA read count

Is there a new subtype of kidney cancer cells?

Kidney tumor

	Gene 1	Gene 2	Gene 3	
Cell 1	10	10	0	
Cell 2	0	15	4	
Cell 3	600	0	20	
:				

Single-cell RNA read count

Is there a new subtype of kidney cancer cells?

Unsupervised learning

Kidney tumor

	Gene 1	Gene 2	Gene 3	
Cell 1	10	10	0	
Cell 2	0	15	4	
Cell 3	600	0	20	
•				

Single-cell RNA read count

Is there a new subtype of kidney cancer cells?

Cannot test it with a clustering algorithm.

Spurious clusters

	Gene 1	Gene 2	Gene 3	
Cell 1	10	10	0	
Cell 2	0	15	4	
Cell 3	600	0	20	
:				

Single-cell RNA read count

Is there a new subtype of kidney cancer cells?

 H_0

 H_0

 H_0

 H_1

 H_0

 H_1

 H_0

 H_1

on $\mathbb R$

Vise clustering (e.g., k-means) to find the direction!

on \mathbb{R}

Vise clustering (e.g., k-means) to find the direction!

Double dipping!

on \mathbb{R}

Vise clustering (e.g., k-means) to find the direction!

Double dipping!

on \mathbb{R}

Data splitting!

p value		
0.	2	
0.		
0.	6	
0.	3	
0.	006	***
0.	4	
0.	7	
0.	8	
0.	3	
0.	06	

Significant 1 out of 10 times.

Significant 1 out of 10 times. " "No evidence for a new subtype."

"Significant 1 out of 10 times." " "No evidence for a new subtype."

Significant 1 out of 10 times." " "No evidence for a new subtype."

"Significant 1 out of 10 times." " "No evidence for a new subtype."

Significant 1 out of 10 times." " "No evidence for a new subtype."

Significant 1 out of 10 times. " "No evidence for a new subtype."

Significant 1 out of 10 times." " "No evidence for a new subtype."

Hunted the wrong direction 9/10 times. Missed opportunity!

Bill

Laura

Misses the true signal in data

Bill

Raises concern on replicability

High variability conditional on data

Laura

Misses the true signal in data

Bill

Raises concern on replicability

A High variability conditional on data

Laura

Bill

Raises concern on replicability

A High variability conditional on data

Version of the second strain of the second strai

Laura

Outline

- Setup and main challenge
- Method: Rank-transformed subsampling
- Applications
 - Hunt and test
 - Improving inference for double machine learning
 - Testing no direct effect in a sequentially randomized trial
- Future directions

IID Data: $X := (X_1, ..., X_n) \sim P^n$. Hypothesis testing: $P \in H_0$ vs $P \in H_1$.

IID Data: $X := (X_1, ..., X_n) \sim P^n$. Hypothesis testing: $P \in H_0$ vs $P \in H_1$.

"Single-split" statistic: $T_n(X_1, ..., X_n; \Omega)$, where Ω is \mathcal{D} .

- Extra randomness $\Omega \sim P_{\Omega}$ independent of *X*.
- Ω is used to split data, perform resampling, etc.

IID Data: $X := (X_1, \dots, X_n) \sim P^n$. Hypothesis testing: $P \in H_0$ vs $P \in H_1$.

"Single-split" statistic: $T_n(X_1, \ldots, X_n; \Omega)$, where Ω is $\sum_{n=1}^{\infty}$.

- Extra randomness $\Omega \sim P_{\Omega}$ independent of X.
- Ω is used to split data, perform resampling, etc.

Assumption. For $P \in H_0$, $T_n(X; \Omega) \to_d F_0$ as $n \to \infty$ unconditionally.

- "unconditionally" = over randomness of both X and Ω
- "conditionally" = over randomness of $\Omega \mid X$

IID Data: $X := (X_1, \dots, X_n) \sim P^n$. Hypothesis testing: $P \in H_0$ vs $P \in H_1$.

"Single-split" statistic: $T_n(X_1, \ldots, X_n; \Omega)$, where Ω is $\langle \Sigma \rangle$.

- Extra randomness $\Omega \sim P_{\Omega}$ independent of X.
- Ω is used to split data, perform resampling, etc.

Assumption. For $P \in H_0$, $T_n(X; \Omega) \to_d F_0$ as $n \to \infty$ unconditionally.

- "unconditionally" = over randomness of both X and Ω
- "conditionally" = over randomness of $\Omega \mid X$

(1) $F_0 = unif(0,1)$ for p-value (2) $F_0 = \mathcal{N}(0,1)$ for Z-statistic

IID Data: $X := (X_1, ..., X_n) \sim P^n$. Hypothesis testing: $P \in H_0$ vs $P \in H_1$.

"Single-split" statistic: $T_n(X_1, \ldots, X_n; \Omega)$, where Ω is $\langle \mathcal{Y} \rangle$.

- Extra randomness $\Omega \sim P_{\Omega}$ independent of X.
- Ω is used to split data, perform resampling, etc.

Assumption. For $P \in H_0$, $T_n(X; \Omega) \to_d F_0$ as $n \to \infty$ unconditionally.

- "unconditionally" = over randomness of both X and Ω
- "conditionally" = over randomness of $\Omega \mid X$

"Single-split" test: Reject H_0 whenever $T_n \ge (\alpha \text{ quantile of } F_0)$.

High conditional variability. Low power.

(1) F_0 = unif(0,1) for p-value (2) $F_0 = \mathcal{N}(0,1)$ for Z-statistic

"Multiple-split", exchangeable statistics: Fix X. Draw $\Omega^{(1)}, ..., \Omega^{(L)}$ as L independent copies of Ω and let ... , $T_n^{(L)} := T_n(X; \Omega^{(L)})$.

$$T_n^{(1)} := T_n(X; \Omega^{(1)}),$$

"Multiple-split", exchangeable statistics: Fix X. Draw $\Omega^{(1)}, ..., \Omega^{(L)}$ as L independent copies of Ω and let ..., $T_n^{(L)} := T_n(X; \Omega^{(L)})$.

$$T_n^{(1)} := T_n(X; \Omega^{(1)}),$$

rightarrow By construction, $T_n^{(1)}, \ldots, T_n^{(L)}$ are unconditionally exchangeable.

$$T_n^{(1)} := T_n(X; \Omega^{(1)}),$$

rightarrow By construction, $T_n^{(1)}, \ldots, T_n^{(L)}$ are unconditionally exchangeable.

Aggregated statistic:

 $S_n := S(T_n^{(1)}, \dots, T_n^{(L)}),$

for a chosen aggregation function $S : \mathbb{R}^L \to \mathbb{R}$.

rightarrow S should be symmetric and Lipschitz in $\|\cdot\|_{\infty}$. rightarrow Examples: S = avg, S = min.

"Multiple-split", exchangeable statistics: Fix X. Draw $\Omega^{(1)}, \dots, \Omega^{(L)}$ as L independent copies of Ω and let ..., $T_n^{(L)} := T_n(X; \Omega^{(L)})$.

$$T_n^{(1)} := T_n(X; \Omega^{(1)}),$$

rightarrow By construction, $T_n^{(1)}, \ldots, T_n^{(L)}$ are unconditionally exchangeable.

Aggregated statistic:

 $S_n := S(T_n^{(1)}, \dots, T_n^{(L)}),$

for a chosen aggregation function $S : \mathbb{R}^L \to \mathbb{R}$.

rightarrow S should be symmetric and Lipschitz in $\|\cdot\|_{\infty}$. rightarrow Examples: S = avg, S = min.

Aggregated test: Reject H_0 when $S_n = S(T_n^{(1)}, \dots, T_n^{(L)}) \leq ?$

"Multiple-split", exchangeable statistics: Fix X. Draw $\Omega^{(1)}, \dots, \Omega^{(L)}$ as L independent copies of Ω and let ..., $T_n^{(L)} := T_n(X; \Omega^{(L)})$.

$$T_n^{(1)} := T_n(X; \Omega^{(1)}),$$

rightarrow By construction, $T_n^{(1)}, \ldots, T_n^{(L)}$ are unconditionally exchangeable.

Aggregated statistic:

 $S_n := S(T_n^{(1)}, \dots, T_n^{(L)}),$

for a chosen aggregation function $S : \mathbb{R}^L \to \mathbb{R}$.

rightarrow S should be symmetric and Lipschitz in $\|\cdot\|_{\infty}$. rightarrow Examples: S = avg, S = min.

Aggregated test: Reject H_0 when $S_n = S(T_n^{(1)}, \dots, T_n^{(L)}) \leq ?$

 \checkmark Lower conditional variability and \checkmark more power compared to the single-split test: $T_n^{(1)} \ge (\alpha \text{ quantile of } F_0)$.

"Multiple-split", exchangeable statistics: Fix X. Draw $\Omega^{(1)}, \dots, \Omega^{(L)}$ as L independent copies of Ω and let ..., $T_n^{(L)} := T_n(X; \Omega^{(L)})$.

Main challenge

Solution Aggregated test: Reject H_0 when $S_n = S(T_n^{(1)}, ..., T_n^{(L)}) \leq ?$

Main challenge

(2) Copula: Joint distribution of $F_{n,P}(T_n^{(1)}), \ldots, F_{n,P}(T_n^{(L)})$, where $F_{n,P}$ is the CDF of $T_n^{(1)}$

 \checkmark Under H_0 , S_n converges to some unknown distribution that depends on $P \in H_0$.

Typically, S_n will converge to some non-degenerate limit distribution under H_0 .

Existing approaches: Two types

Existing approaches: Two types

(1) Assumes a parametric copula (e.g., Gaussian) and fits it.

(1) Assumes a parametric copula (e.g., Gaussian) and fits it.

Easily misspecified in real applications. Cannot control type-I error.

Kim & Ramdas (2020)

 $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \Sigma)$ in \mathbb{R}^3 . Single-split statistic for testing H_0 : $\mu = 0$ $T_n := \frac{\sqrt{n_2} \hat{\mu}_1^{\mathsf{T}} \hat{\mu}_2}{\hat{\mu}_1^{\mathsf{T}} \hat{\Sigma}_2 \hat{\mu}_1} \rightarrow_d \mathcal{N}(0,1) \text{ under } H_0.$

(1) Assumes a parametric copula (e.g., Gaussian) and fits it.

Easily misspecified in real applications. Cannot control type-I error.

Kim & Ramdas (2020)

 $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \Sigma)$ in \mathbb{R}^3 . Single-split statistic for testing H_0 : $\mu = 0$ $T_n := \frac{\sqrt{n_2}\hat{\mu}_1^{\mathsf{T}}\hat{\mu}_2}{\hat{\mu}_1^{\mathsf{T}}\hat{\Sigma}_2\hat{\mu}_1} \rightarrow_d \mathcal{N}(0,1) \text{ under } H_0.$

! Copula can be complex. No generic approximation.

Null distribution of $(T_n^{(1)} + ... + T_n^{(200)})/200$

(1) Assumes a parametric copula (e.g., Gaussian) and fits it.

Easily misspecified in real applications. Cannot control type-I error.

Kim & Ramdas (2020)

 $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \Sigma)$ in \mathbb{R}^3 . Single-split statistic for testing H_0 : $\mu = 0$ $T_n := \frac{\sqrt{n_2} \hat{\mu}_1^{\mathsf{T}} \hat{\mu}_2}{\hat{\mu}_1^{\mathsf{T}} \hat{\Sigma}_2 \hat{\mu}_1} \rightarrow_d \mathcal{N}(0,1) \text{ under } H_0.$

L Copula can be complex. No generic approximation.

(2) Guards against the worst-case copula.

Null distribution of $(T_n^{(1)} + ... + T_n^{(200)})/200$

(1) Assumes a parametric copula (e.g., Gaussian) and fits it.

Leasily misspecified in real applications. Cannot control type-l error.

Kim & Ramdas (2020)

 $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \Sigma)$ in \mathbb{R}^3 . Single-split statistic for testing H_0 : $\mu = 0$

$$T_n := \frac{\sqrt{n_2} \hat{\mu}_1^{\mathsf{T}} \hat{\mu}_2}{\hat{\mu}_1^{\mathsf{T}} \hat{\Sigma}_2 \hat{\mu}_1} \rightarrow_d \mathcal{N}(0,1) \text{ under } H_0.$$

L Copula can be complex. No generic approximation.

(2) Guards against the worst-case copula.

A large body of literature on combining p-values under arbitrary dependence.

- Averaging p-values multiplied by two (Rüschendorf, 1982; Meng, 1994)
- Generalized means (Vovk & Wang, 2020)
- Quantiles (Meinshausen et al., 2009; DiCiccio et al., 2020)
- Concentration inequalities (DiCiccio et al., 2020)
- Cauchy transformations (Liu & Xie, 2020)
- e-values (Vovk & Wang, 2021)

. . .

Null distribution of $(T_n^{(1)} + ... + T_n^{(200)})/200$

(1) Assumes a parametric copula (e.g., Gaussian) and fits it.

Easily misspecified in real applications. Cannot control type-I error.

Kim & Ramdas (2020)

 $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \Sigma)$ in \mathbb{R}^3 . Single-split statistic for testing H_0 : $\mu = 0$

$$T_n := \frac{\sqrt{n_2} \hat{\mu}_1^{\mathsf{T}} \hat{\mu}_2}{\hat{\mu}_1^{\mathsf{T}} \hat{\Sigma}_2 \hat{\mu}_1} \rightarrow_d \mathcal{N}(0,1) \text{ under } H_0.$$

L Copula can be complex. No generic approximation.

(2) Guards against the worst-case copula.

A large body of literature on combining p-values under arbitrary dependence.

- Averaging p-values multiplied by two (Rüschendorf, 1982; Meng, 1994)
- Generalized means (Vovk & Wang, 2020)
- Quantiles (Meinshausen et al., 2009; DiCiccio et al., 2020)
- Concentration inequalities (DiCiccio et al., 2020)
- Cauchy transformations (Liu & Xie, 2020)
- e-values (Vovk & Wang, 2021)

. . . .

Null distribution of $(T_n^{(1)} + ... + T_n^{(200)})/200$

Very conservative

actual type-I error $\ll \alpha$, typically

(1) Assumes a parametric copula (e.g., Gaussian) and fits it.

Easily misspecified in real applications. Cannot control type-I error.

Kim & Ramdas (2020)

 $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \Sigma)$ in \mathbb{R}^3 . Single-split statistic for testing H_0 : $\mu = 0$

$$T_n := \frac{\sqrt{n_2} \hat{\mu}_1^{\mathsf{T}} \hat{\mu}_2}{\hat{\mu}_1^{\mathsf{T}} \hat{\Sigma}_2 \hat{\mu}_1} \rightarrow_d \mathcal{N}(0,1) \text{ under } H_0.$$

L Copula can be complex. No generic approximation.

(2) Guards against the worst-case copula.

A large body of literature on combining p-values under arbitrary dependence.

- Averaging p-values multiplied by two (Rüschendorf, 1982; Meng, 1994)
- Generalized means (Vovk & Wang, 2020)
- Quantiles (Meinshausen et al., 2009; DiCiccio et al., 2020)
- Concentration inequalities (DiCiccio et al., 2020)
- Cauchy transformations (Liu & Xie, 2020)
- e-values (Vovk & Wang, 2021)

. . . .

Null distribution of $(T_n^{(1)} + ... + T_n^{(200)})/200$

Very conservative

actual type-I error $\ll \alpha$, typically

Symmetry does not help. (Choi & Kim, 2022)

Outline

- Setup and main challenge
- Method: Rank-transformed subsampling
- Applications
 - Hunt and test
 - Improving inference for double machine learning
 - Testing no direct effect in a sequentially randomized trial
- Future directions

$$(T_n^{(1)}, \dots, T_n^{(L)})$$
under H_0
(1) Marginal: F_0
(2) Copula: $C_{n,P}(u_1)$

Main Challenge

 $f_1, \dots, u_L) = \mathbb{P}\left(F_{n,P}(T_n^{(1)}) \le u_1, \dots, F_{n,P}(T_n^{(L)}) \le u_L\right)$

$$(T_n^{(1)}, \dots, T_n^{(L)})$$
under H_0
(1) Marginal: F_0
(2) Copula: $C_{n,P}(u_1)$

 \bigcirc Aggregated test: Reject H_0

$$\dots, u_{L}) = \mathbb{P}\left(F_{n,P}(T_{n}^{(1)}) \le u_{1}, \dots, F_{n,P}(T_{n}^{(L)}) \le u_{L}\right) ?$$
when $S_{n} = S(T_{n}^{(1)}, \dots, T_{n}^{(L)}) \le ?$

$$(T_{n}^{(1)}, ..., T_{n}^{(L)}) \left\{ \begin{array}{l} \text{(1) Marginal: } F_{0} \\ \text{under } H_{0} \end{array} \right.$$

$$(2) \text{ Copula: } C_{n,P}(u_{1}, ..., P_{n})$$

Estimate it no

 \bigcirc Aggregated test: Reject H_0

...,
$$u_L$$
) = $\mathbb{P}\left(F_{n,P}(T_n^{(1)}) \le u_1, \dots, F_{n,P}(T_n^{(L)}) \le u_L\right)$?
nparametrically with subsampling!
when $S_n = S(T_n^{(1)}, \dots, T_n^{(L)}) \le$?

$$(T_{n}^{(1)}, \dots, T_{n}^{(L)}) \left\{ \begin{array}{l} \text{(1) Marginal: } F_{0} \\ \text{under } H_{0} \end{array} \right.$$
(2) Copula: $C_{n,P}(u_{1}, \dots, P_{n})$

Estimate it no

Generated test: Reject H_0

(1) Marginal F_0

(2) Estimated Copula

...,
$$u_L$$
) = $\mathbb{P}\left(F_{n,P}(T_n^{(1)}) \le u_1, \dots, F_{n,P}(T_n^{(L)}) \le u_L\right)$?
nparametrically with subsampling!
when $S_n = S(T_n^{(1)}, \dots, T_n^{(L)}) \le$?

$$T_{n}^{(1)}, \dots, T_{n}^{(L)}) \begin{cases} (1) \text{ Marginal: } F_{0} \checkmark \\ under H_{0} \end{cases}$$
(2) Copula: $C_{n,P}(u_{1})$

Estimate it noi

 \bigcirc Aggregated test: Reject H_0

(1) Marginal F_0 (2) Estimated Copula F_0

...,
$$u_L$$
) = $\mathbb{P}\left(F_{n,P}(T_n^{(1)}) \le u_1, \dots, F_{n,P}(T_n^{(L)}) \le u_L\right)$?
nparametrically with subsampling!
when $S_n = S(T_n^{(1)}, \dots, T_n^{(L)}) \le$?

$$T_{n}^{(1)}, \dots, T_{n}^{(L)}) \begin{cases} (1) \text{ Marginal: } F_{0} \checkmark \\ under H_{0} \end{cases}$$
(2) Copula: $C_{n,P}(u_{1})$

Estimate it no

 \bigcirc Aggregated test: Reject H_0

(1) Marginal F_0 (\widetilde{T}_{r}) (2) Estimated Copula

...,
$$u_L$$
) = $\mathbb{P}\left(F_{n,P}(T_n^{(1)}) \le u_1, ..., F_{n,P}(T_n^{(L)}) \le u_L\right)$?
nparametrically with subsampling!
when $S_n = S(T_n^{(1)}, ..., T_n^{(L)}) \le$?

$$\widetilde{T}_n^{(1)}, \dots, \widetilde{T}_n^{(L)}) \xrightarrow{S} \widetilde{S}_n$$

$$T_{n}^{(1)}, \dots, T_{n}^{(L)}) \begin{cases} (1) \text{ Marginal: } F_{0} \checkmark \\ under H_{0} \end{cases}$$
(2) Copula: $C_{n,P}(u_{1})$

Estimate it no

 \bigcirc Aggregated test: Reject H_0

(1) Marginal F_0 (\widetilde{T}_{r}) (2) Estimated Copula

$$\dots, u_{L}) = \mathbb{P}\left(F_{n,P}(T_{n}^{(1)}) \leq u_{1}, \dots, F_{n,P}(T_{n}^{(L)}) \leq u_{L}\right)$$
nparametrically with subsampling!
$$when S_{n} = S(T_{n}^{(1)}, \dots, T_{n}^{(L)}) \leq \square$$

$$\alpha \text{ quantile}$$

$$\tilde{T}_{n}^{(1)}, \dots, \tilde{T}_{n}^{(L)}) \xrightarrow{S} \tilde{S}_{n}$$

$$T_{n}^{(1)}, \dots, T_{n}^{(L)}) \begin{cases} (1) \text{ Marginal: } F_{0} \checkmark \\ under H_{0} \end{cases}$$
(2) Copula: $C_{n,P}(u_{1})$

Estimate it no

 \bigcirc Aggregated test: Reject H_0

$$\dots, u_{L}) = \mathbb{P}\left(F_{n,P}(T_{n}^{(1)}) \leq u_{1}, \dots, F_{n,P}(T_{n}^{(L)}) \leq u_{L}\right)$$
nparametrically with subsampling!
$$when S_{n} = S(T_{n}^{(1)}, \dots, T_{n}^{(L)}) \leq \square$$

$$\alpha \text{ quantile}$$

$$\tilde{T}_{n}^{(1)}, \dots, \tilde{T}_{n}^{(L)}) \xrightarrow{S} \tilde{S}_{n}$$

1. Randomly pick Bsubsamples of size $m = [n/\log n]$

1. Randomly pick *B* subsamples of size $m = [n/\log n]$

- 1. Randomly pick *B* subsamples of size $m = [n/\log n]$
- 2. Compute $(T_m^{(1)}, \ldots, T_m^{(L)})$ for each subsample

- 1. Randomly pick *B* subsamples of size $m = [n/\log n]$
- 2. Compute $(T_m^{(1)}, \ldots, T_m^{(L)})$ for each subsample

- 1. Randomly pick *B* subsamples of size $m = [n/\log n]$
- 2. Compute $(T_m^{(1)}, \ldots, T_m^{(L)})$ for each subsample

- 1. Randomly pick *B* subsamples of size $m = [n/\log n]$
- 2. Compute $(T_m^{(1)}, \ldots, T_m^{(L)})$ for each subsample

 $T_m^{(L)}$

0.2

- 1. Randomly pick *B* subsamples of size $m = [n/\log n]$
- 2. Compute $(T_m^{(1)}, \ldots, T_m^{(L)})$ for each subsample

- 1. Randomly pick *B* subsamples of size $m = [n/\log n]$
- 2. Compute $(T_m^{(1)}, \ldots, T_m^{(L)})$ for each subsample

 $T_m^{(L)}$

0.2

1.9

- 1. Randomly pick *B* subsamples of size $m = [n/\log n]$
- 2. Compute $(T_m^{(1)}, \ldots, T_m^{(L)})$ for each subsample

- 1. Randomly pick *B* subsamples of size $m = [n/\log n]$
- 2. Compute $(T_m^{(1)}, \ldots, T_m^{(L)})$ for each subsample

- 1. Randomly pick *B* subsamples of size $m = [n/\log n]$
- 2. Compute $(T_m^{(1)}, \ldots, T_m^{(L)})$ for each subsample
- 3. In this $B \times L$ matrix, replace each entry by its rank

- 1. Randomly pick *B* subsamples of size $m = [n/\log n]$
- 2. Compute $(T_m^{(1)}, \ldots, T_m^{(L)})$ for each subsample
- 3. In this $B \times L$ matrix, replace each entry by its rank

- 1. Randomly pick *B* subsamples of size $m = [n/\log n]$
- 2. Compute $(T_m^{(1)}, \ldots, T_m^{(L)})$ for each subsample
- 3. In this $B \times L$ matrix, replace each entry by its rank
- 4. Normalize the ranks (Copula estimate)

- 1. Randomly pick Bsubsamples of size $m = [n/\log n]$
- 2. Compute $(T_m^{(1)}, ..., T_m^{(L)})$ for each subsample
- 3. In this $B \times L$ matrix, replace each entry by its rank
- 4. Normalize the ranks (Copula estimate)
- 5. Apply F_0^{-1} entry-wise (Enforce the margin)

- 1. Randomly pick Bsubsamples of size $m = [n/\log n]$
- 2. Compute $(T_m^{(1)}, ..., T_m^{(L)})$ for each subsample
- 3. In this $B \times L$ matrix, replace each entry by its rank
- 4. Normalize the ranks (Copula estimate)
- 5. Apply F_0^{-1} entry-wise (Enforce the margin)
- 6. Aggregate

 $L = 2, F_0 = unif(0,1)$

 $L = 2, F_0 = unif(0,1)$

before rank transform

23

 $L = 2, F_0 = \text{unif}(0,1)$ S = avg

23

Rank-transformed subsampling: under H_0

 $L = 2, F_0 = unif(0,1)$

$$S = avg$$

Null distribution of S_n ,

23

Rank-transformed subsampling: under H_0

 $L = 2, F_0 = unif(0,1)$

$$S = avg$$

Null distribution of S_n

before rank transform

after rank transform

A1. For $P \in H_0$, $T_n(X; \Omega) \rightarrow_d F_0 \in \{\text{unif}(0,1), \mathcal{N}(0,1)\}$ as $n \rightarrow \infty$.

A1. For $P \in H_0$, $T_n(X; \Omega) \rightarrow_d F_0 \in \{\text{unif}(0,1), \mathcal{N}(0,1)\}$ as $n \rightarrow \infty$.

Theorem Suppose $S(\cdot)$ is symmetric and Lipschitz. Suppose the aggregated S_n has a continuous asymptotic law under H_0 . Then, under A1, our test is pointwise asymptotically level α .

A1. For $P \in H_0$, $T_n(X; \Omega) \to_d F_0 \in \{\text{unif}(0,1), \mathcal{N}(0,1)\}$ as $n \to \infty$.

Theorem Suppose $S(\cdot)$ is symmetric and Lipschitz. Suppose the aggregated S_n has a continuous asymptotic law under H_0 . Then, under A1, our test is pointwise asymptotically level α .

Further, if T_n and S_n converge to their respective limit distributions uniformly over H_0 , then our test is uniformly asymptotic level α .

 $L = 2, F_0 = unif(0,1)$

S = avg

$$L = 2, F_0 = unif(0,1)$$

 $S = avg$

before rank transform

25

Null distribution of S_n

before rank transform

25

Null distribution of S_n

before rank transform

after rank transform

before rank transform

 \mathbb{P} Intuition: copula under the null \approx copula under local alternatives

(e.g., Le Cam's 3rd Lemma)

after rank transform

Theory: Local power

Theory: Local power

Theorem (informal) Fix $P_0 \in H_0$.

If the copula of $(T_n^{(1)}, \ldots, T_n^{(L)})$ converges in a locally uniform fashion at P_0 , then for P_0 's local alternatives,

| Power(our test) - Power(oracle test) | $\rightarrow 0$,

where the oracle test has access to S_n 's null distribution under P_0 .

 \bigcirc For example, when Le Cam's 3rd lemma is applicable to $(T_n^{(1)}, \ldots, T_n^{(L)})$.

Outline

- Setup and main challenge
- Method: Rank-transformed subsampling
- Applications
 - Hunt and test
 - Improving inference for double machine learning
 - Testing no direct effect in a sequentially randomized trial
- Future directions

 \checkmark Test hypothesis of the form $H_0 = \bigcap_d H_0(d)$, where each $H_0(d)$ is relatively easy to test.

 \checkmark Test hypothesis of the form $H_0 = \bigcap_d H_0(d)$, where each $H_0(d)$ is relatively easy to test.

 \checkmark Test hypothesis of the form $H_0 = \bigcap_d H_0(d)$, where each $H_0(d)$ is relatively easy to test.

 \checkmark Test hypothesis of the form $H_0 = \bigcap_d H_0(d)$, where each $H_0(d)$ is relatively easy to test.

(1) Use **constant** to find \hat{d} such that $H_0(\hat{d})$ is most likely to be rejected.

EXAMPLE to find \hat{d} such that $H_0(\hat{d})$ is most likely to be rejected. (2) Use **[10]** to compute a test statistic for $H_0(\hat{d})$ and call it T_n .

EXAMPLE to find \hat{d} such that $H_0(\hat{d})$ is most likely to be rejected. (2) Use **[10]** to compute a test statistic for $H_0(\hat{d})$ and call it T_n .

rightarrow Test hypothesis of the form $H_0 = \bigcap_d H_0(d)$, where each $H_0(d)$ is relatively easy to test.

NOT selective inference!

 $X \in \mathbb{R}^p$: gene expression of a random cell in the sample.

Laura

(1) Use **content** to find \hat{d} such that $H_0(\hat{d})$ is most likely to be rejected. (2) Use **[10]** to compute a test statistic for $H_0(\hat{d})$ and call it T_n .

rightarrow Test hypothesis of the form $H_0 = \bigcap_d H_0(d)$, where each $H_0(d)$ is relatively easy to test.

NOT selective inference!

 $X \in \mathbb{R}^p$: gene expression of a random cell in the sample.

 $H_0 = \{X \sim \text{only one subtype}\}$

 $= \{X \sim \text{unimodal}\}$

(1) Use **content** to find \hat{d} such that $H_0(\hat{d})$ is most likely to be rejected. (2) Use **[10]** to compute a test statistic for $H_0(\hat{d})$ and call it T_n .

very hard

rightarrow Test hypothesis of the form $H_0 = \bigcap_d H_0(d)$, where each $H_0(d)$ is relatively easy to test.

NOT selective inference!

- $H_0 = \{X \sim \text{only one subtype}\}$
 - $= \{X \sim unimodal\}$

 $= \bigcap_{d \in \mathbb{R}^p} \{ d^{\mathsf{T}} X \sim \text{unimodal} \}$

Laura

(1) Use **content** to find \hat{d} such that $H_0(\hat{d})$ is most likely to be rejected. (2) Use **[10]** to compute a test statistic for $H_0(\hat{d})$ and call it T_n .

 $X \in \mathbb{R}^p$: gene expression of a random cell in the sample.

```
very hard
linear unimodality
```

rightarrow Test hypothesis of the form $H_0 = \bigcap_d H_0(d)$, where each $H_0(d)$ is relatively easy to test.

NOT selective inference!

- $H_0 = \{X \sim \text{only one subtype}\}$
 - $= \{X \sim unimodal\}$
 - $= \bigcap_{d \in \mathbb{R}^p} \{ d^{\mathsf{T}} X \sim \text{unimodal} \}$

(1) Find
$$\hat{d}$$
 by running 2
(2) Compute $T_n := dip$

Laura

(1) Use **content** to find \hat{d} such that $H_0(\hat{d})$ is most likely to be rejected.

 $X \in \mathbb{R}^p$: gene expression of a random cell in the sample.

Simulation in \mathbb{R}^p

29

Simulation in \mathbb{R}^p

29

Simulation in \mathbb{R}^p

• Rank-transform subsampling maintains the correct level and significantly improves power.

Simulation in \mathbb{R}^p

• Rank-transform subsampling maintains the correct level and significantly improves power.

Simulation in \mathbb{R}^p

- Rank-transform subsampling maintains the correct level and significantly improves power.
- Adaptive version of the algorithm achieves the better performance between the two choices of S.

Simulation in \mathbb{R}^p

- Rank-transform subsampling maintains the correct level and significantly improves power.
- Adaptive version of the algorithm achieves the better performance between the two choices of S.
- Conservatively averaged p-value is not competitive.

Simulation in \mathbb{R}^p

- Rank-transform subsampling maintains the correct level and significantly improves power.
- Adaptive version of the algorithm achieves the better performance between the two choices of S.
- Conservatively averaged p-value is not competitive.
- SigClust: for unit balls, it loses power as p increases; for multivariate t, it does not control type-I error.

Yufeng Liu, David Neil Hayes, Andrew Nobel, and J. S Marron. Statistical significance of clustering for high-dimension, low-sample size data. Journal of the American Statistical Association (2008). https://CRAN.R-project.org/package=sigclust

ICGC/TCGA Pan-Cancer dataset

ICGC/TCGA Pan-Cancer dataset

Selected 1000 genes by comparing to control

	Gene 1	Gene 2	Gene 3	
Cell 1	-1.2	0.5	6.2	
Cell 2	0.1	12	1.1	
Cell 3	-2.2	0	-2	
• •				

Normalized mRNA expression

ICGC/TCGA Pan-Cancer dataset

	Gene 1	Gene 2	Gene 3	•••
Cell 1	-1.2	0.5	6.2	
Cell 2	0.1	12	1.1	
Cell 3	-2.2	0	-2	
• •				

Normalized mRNA expression

ICGC/TCGA Pan-Cancer dataset

	Gene 1	Gene 2	Gene 3	
Cell 1	-1.2	0.5	6.2	
Cell 2	0.1	12	1.1	
Cell 3	-2.2	0	-2	
• •				

Normalized mRNA expression

Hunt and test: Detecting cancer subtypes

ICGC/TCGA Pan-Cancer dataset

	Gene 1	Gene 2	Gene 3	•••
Cell 1	-1.2	0.5	6.2	
Cell 2	0.1	12	1.1	
Cell 3	-2.2	0	-2	
•				

Normalized mRNA expression

Happy Laura

Other hunt-and-test / data-split procedures

- Testing multiple sample (Cox, 1975)
- Split conformal prediction (Lei et al., 2018; Solari & Djordjilović, 2022)
- Goodness-of-fit testing (Janková et al., 2020)
- Conditional (mean) independence testing (Scheidegger et al., 2021; Lundborg et al., 2022)
- Dimension-agnostic inference (Kim & Ramdas, 2020)

. . .

Outline

- Setup and main challenge
- Method: Rank-transformed subsampling
- Applications
 - Hunt and test
 - Improving inference for double machine learning
 - Testing no direct effect of a sequentially randomized trial
- Future directions

	t.seed(42) l\$fit()			
tau		Std. Error 0.035		Pr(> t) 0.004 **
	t.seed(43) l\$fit()			
tau	Estimate. —0.06	Std. Error 0.035	t value -1.71	• · · · ·
				*

Problem 1. Conditional variability due to data splitting

Problem 2. DML Std. Error tends to be too small

It ignores cross-fold correlation

Problem 1. Conditional variability due to data splitting

Solution Each fold defines a "single-split" statistic $T_n^{(1)} := \frac{\sqrt{n/2}(\hat{\tau}_1^{(1)} - \tau)}{\tau}$

♀ Each fold defines a "single-split" statistic $T_n^{(1)} := -\frac{\sqrt{n}}{2}$ For $\hat{\tau}_{\text{DML}} := (\hat{\tau}^{(1)} + \hat{\tau}^{(2)})/2$,

DML CLT:

 \bigcirc Under conditions required by DML, between-fold correlation $\rho \rightarrow 0$.

$$\frac{1}{\sqrt{2}}(T_n^{(1)} + T_n^{(2)}) \to \mathcal{N}(0,1) \,.$$

a Each fold defines a "single-split" statistic $T_n^{(1)} := -$

For $\hat{\tau}_{\text{DML}} := (\hat{\tau}^{(1)} + \hat{\tau}^{(2)})/2$, $\sqrt{n(\hat{\tau}_{\mathsf{DML}} - \tau)}$ DML CLT:

 \bigcirc Under conditions required by DML, between-fold correlation $\rho \rightarrow 0$. For finite sample, $\rho > 0$.

- σ/\sqrt{n} DML
- $\sigma \sqrt{1}$ -Actual

$$\frac{1}{\sqrt{2}} \left(T_n^{(1)} + T_n^{(2)} \right) \to \mathcal{N}(0,1) \,.$$

Std. Error

$$1 + \rho(L-1) / \sqrt{n}$$

34

 \mathbb{P} Rank-transformed subsampling **automatically accounts for** ρ .

 \mathbb{P} Rank-transformed subsampling **automatically accounts for** ρ .

 \leftarrow Can be performed without knowing τ or σ :

$$\operatorname{rank}\left(T_{m}^{(l)}\right) = \operatorname{rank}\left\{\frac{\sqrt{m/2}(\hat{\tau}_{m}^{(l)} - \tau)}{\sigma}\right\} = \operatorname{rank}\left(\hat{\tau}_{m}^{(l)}\right)$$

 \mathbb{P} Rank-transformed subsampling **automatically accounts for** ρ .

 \leftarrow Can be performed without knowing τ or σ :

$$\operatorname{rank}\left(T_{m}^{(l)}\right) = \operatorname{rank}\left\{\frac{\sqrt{m/2}(\hat{\tau}_{m}^{(l)} - \tau)}{\sigma}\right\} = \operatorname{rank}\left(\hat{\tau}_{m}^{(l)}\right)$$

			Table	Table 1: Coverage of nominal 95% confidence intervals					
				n =	500	n =	1000	n = 2	2000
/	covariates X		method	L=2	L = 5	L=2	L = 5	L=2	L = 5
			ho(L-1)	0.46	0.31	0.36	0.18	0.25	0.14
cash bonus A	τ	unemployment duration Y	Corrected DML	$\begin{array}{c} 0.94 \\ 0.86 \end{array}$	$\begin{array}{c} 0.93 \\ 0.88 \end{array}$	$\begin{array}{c} 0.95 \\ 0.88 \end{array}$	$\begin{array}{c} 0.95 \\ 0.92 \end{array}$	$\begin{array}{c} 0.96 \\ 0.91 \end{array}$	$\begin{array}{c} 0.95 \\ 0.92 \end{array}$

 \mathbb{P} Rank-transformed subsampling **automatically accounts for** ρ .

 \leftarrow Can be performed without knowing τ or σ :

$$\operatorname{rank}\left(T_{m}^{(l)}\right) = \operatorname{rank}\left\{\frac{\sqrt{m/2}(\hat{\tau}_{m}^{(l)} - \tau)}{\sigma}\right\} = \operatorname{rank}\left(\hat{\tau}_{m}^{(l)}\right)$$

			Table	Table 1: Coverage of nominal 95% confidence intervals					
				n = 500			n = 1000		2000
/	covariates X		method	L=2	L = 5	L=2	L = 5	L=2	L = 5
			ho(L-1)	0.46	0.31	0.36	0.18	0.25	0.14
cash bonus A	τ	unemployment duration Y	Corrected DML	$\begin{array}{c} 0.94 \\ 0.86 \end{array}$	$\begin{array}{c} 0.93 \\ 0.88 \end{array}$	$\begin{array}{c} 0.95 \\ 0.88 \end{array}$	$\begin{array}{c} 0.95 \\ 0.92 \end{array}$	$\begin{array}{c} 0.96 \\ 0.91 \end{array}$	$\begin{array}{c} 0.95 \\ 0.92 \end{array}$

Calibrated CI's by accounting for correlation. Improved replicability by averaging over data splits.

 \mathbb{P} Rank-transformed subsampling **automatically accounts for** ρ .

 \leftarrow Can be performed without knowing τ or σ :

$$\operatorname{rank}\left(T_{m}^{(l)}\right) = \operatorname{rank}\left\{\frac{\sqrt{m/2}(\hat{\tau}_{m}^{(l)} - \tau)}{\sigma}\right\} = \operatorname{rank}\left(\hat{\tau}_{m}^{(l)}\right)$$

			Table	Table 1: Coverage of nominal 95% confidence intervals					
				n = 500			n = 1000		2000
	covariates X		method	L=2	L = 5	L=2	L = 5	L=2	L = 5
			ho(L-1)	0.46	0.31	0.36	0.18	0.25	0.14
cash bonus A	τ	unemployment duration Y	Corrected DML	$\begin{array}{c} 0.94 \\ 0.86 \end{array}$	$\begin{array}{c} 0.93 \\ 0.88 \end{array}$	$\begin{array}{c} 0.95 \\ 0.88 \end{array}$	$\begin{array}{c} 0.95 \\ 0.92 \end{array}$	$\begin{array}{c} 0.96 \\ 0.91 \end{array}$	$\begin{array}{c} 0.95 \\ 0.92 \end{array}$

Calibrated CI's by accounting for correlation. Improved replicability by averaging over data splits.

Outline

- Setup and main challenge
- Method: Rank-transformed subsampling
- Applications
 - Hunt and test
 - Improving double machine learning
 - Testing no direct effect in a sequentially randomized trial
- Future directions

• SMART trials

(Murphy, 2005; Murphy et al., 2006)

© d3c.isr.umich.edu

• SMART trials

(Murphy, 2005; Murphy et al., 2006)

© d3c.isr.umich.edu

Observational / follow-up studies

HIV studies: A_1, A_2 : antiretroviral therapy; L, Y: CD4 cell counts

health status

 τ : the direct effect of A_1 on Y (i.e., not through A_2).

 τ : the direct effect of A_1 on Y (i.e., not through A_2).

Sharp null hypothesis H_0 : $\tau_i \equiv 0$ for every individual *i*.

* More precisely, $Y_i(1,0) - Y_i(0,0) \equiv 0$ and $Y_i(1,1) - Y_i(0,1) = 0$ for every *i*. $Y_i(a_1, a_2)$ is the potential outcome had subject *i* taken treatments (a_1, a_2) .

 τ : the direct effect of A_1 on Y (i.e., not through A_2).

Sharp null hypothesis H_0 : $\tau_i \equiv 0$ for every individual *i*.

* More precisely, $Y_i(1,0) - Y_i(0,0) \equiv 0$ and $Y_i(1,1) - Y_i(0,1) = 0$ for every *i*. $Y_i(a_1, a_2)$ is the potential outcome had subject *i* taken treatments (a_1, a_2) .

 \bigcirc H_0 cannot be formulated as an independence or conditional independence.

 τ : the direct effect of A_1 on Y (i.e., not through A_2).

Sharp null hypothesis H_0 : $\tau_i \equiv 0$ for every individual *i*.

* More precisely, $Y_i(1,0) - Y_i(0,0) \equiv 0$ and $Y_i(1,1) - Y_i(0,1) = 0$ for every *i*. $Y_i(a_1, a_2)$ is the potential outcome had subject *i* taken treatments (a_1, a_2) .

Sequentially randomized trial under the sharp null

Sequentially randomized trial under the sharp null

Completely randomized trial under the sharp null

Sequentially randomized trial under the sharp null

Completely randomized trial under the sharp null $A1 \longrightarrow L \qquad A2 \longleftarrow Y$ $dQ/dP = q(A_2)/p(A_2 | A_1, L) \qquad Q$

39

♀ Sharp null H_0 : $A_1 \perp Y(Q)$, $dQ/dP = q(A_2)/p(A_2 \mid A_1, L)$.

This is a generalized / "dormant" independence, aka. Verma constraint on P. Robins (1986, 1999), Verma & Pearl (1990), Wermuth & Cox (2008), Richardson et al. (2017) An instance of "distribution shift".

♀ Sharp null H_0 : $A_1 \perp Y(Q)$, $dQ/dP = q(A_2)/p(A_2 \mid A_1, L)$.

A lot of recent progress in independence / conditional independence testing.

	Independence:	kernel embedding (Gretton et al., 2005, 2007), rar
		al., 2021), optimal rates via U-statistics (Berrett
	Conditional	kernel method (Zhang et al., 2011), generalized
	Independence:	(Petersen & Hansen, 2021), projected covariance

- ank correlation coefficients (Bergsma & Dassios, 2014; Drton et al., 2020; Shi et et al., 2021), optimal transport (Liu et al., 2022), etc.
- covariance measure (Shah & Peters, 2020; Scheidegger et al., 2022), copula e (Lundborg et al., 2022), model-X (Candès et al., 2018; Berrett et al., 2020), etc.

A lot of recent progress in independence / conditional independence testing.

Conditional Independence:

 \mathbb{Q} We can simulate data from Q.

- Independence: kernel embedding (Gretton et al., 2005, 2007), rank correlation coefficients (Bergsma & Dassios, 2014; Drton et al., 2020; Shi et al., 2021), optimal rates via U-statistics (Berrett et al., 2021), optimal transport (Liu et al., 2022), etc.
 - kernel method (Zhang et al., 2011), generalized covariance measure (Shah & Peters, 2020; Scheidegger et al., 2022), copula (Petersen & Hansen, 2021), projected covariance (Lundborg et al., 2022), model-X (Candès et al., 2018; Berrett et al., 2020), etc.

A lot of recent progress in independence / conditional independence testing.

Conditional Independence:

 \mathbb{Q} We can simulate data from Q.

P

- Independence: kernel embedding (Gretton et al., 2005, 2007), rank correlation coefficients (Bergsma & Dassios, 2014; Drton et al., 2020; Shi et al., 2021), optimal rates via U-statistics (Berrett et al., 2021), optimal transport (Liu et al., 2022), etc.
 - kernel method (Zhang et al., 2011), generalized covariance measure (Shah & Peters, 2020; Scheidegger et al., 2022), copula (Petersen & Hansen, 2021), projected covariance (Lundborg et al., 2022), model-X (Candès et al., 2018; Berrett et al., 2020), etc.

A lot of recent progress in independence / conditional independence testing.

Conditional Independence:

- Independence: kernel embedding (Gretton et al., 2005, 2007), rank correlation coefficients (Bergsma & Dassios, 2014; Drton et al., 2020; Shi et al., 2021), optimal rates via U-statistics (Berrett et al., 2021), optimal transport (Liu et al., 2022), etc.
 - kernel method (Zhang et al., 2011), generalized covariance measure (Shah & Peters, 2020; Scheidegger et al., 2022), copula (Petersen & Hansen, 2021), projected covariance (Lundborg et al., 2022), model-X (Candès et al., 2018; Berrett et al., 2020), etc.

Testing generalized (conditional) independence

A lot of recent progress in independence / conditional independence testing.

Conditional Independence:

- Independence: kernel embedding (Gretton et al., 2005, 2007), rank correlation coefficients (Bergsma & Dassios, 2014; Drton et al., 2020; Shi et al., 2021), optimal rates via U-statistics (Berrett et al., 2021), optimal transport (Liu et al., 2022), etc.
 - kernel method (Zhang et al., 2011), generalized covariance measure (Shah & Peters, 2020; Scheidegger et al., 2022), copula (Petersen & Hansen, 2021), projected covariance (Lundborg et al., 2022), model-X (Candès et al., 2018; Berrett et al., 2020), etc.

Testing generalized (conditional) independence

A lot of recent progress in independence / conditional independence testing.

Conditional Independence:

- Independence: kernel embedding (Gretton et al., 2005, 2007), rank correlation coefficients (Bergsma & Dassios, 2014; Drton et al., 2020; Shi et al., 2020; S al., 2021), optimal rates via U-statistics (Berrett et al., 2021), optimal transport (Liu et al., 2022), etc.
 - kernel method (Zhang et al., 2011), generalized covariance measure (Shah & Peters, 2020; Scheidegger et al., 2022), copula (Petersen & Hansen, 2021), projected covariance (Lundborg et al., 2022), model-X (Candès et al., 2018; Berrett et al., 2020), etc.

(1) Rej. Sample + Permutation

41

(1) Rej. Sample + Permutation

 Z_i

$$:= \frac{Y_i(A_{1,i} - \mathbb{E}A_1)}{P(A_{2,i} \mid L_i, A_{1,i})}, \qquad \chi_n := \frac{\sum_i Z_i}{\sqrt{\sum_i Z_i^2}} \to_d \mathcal{N}(0,1).$$

"Single-split" T_n Data Splitting \widehat{O} Existing Test Sampling

"Single-split" T_n \checkmark High conditional variability \checkmark Low power Data Splitting Existing Test Sampling

Meta-algorithm: Rank-transformed Subsampling

Reduces (conditional) variability & Boosts power!

Outline

- Setup and main challenge
- Method: Rank-transformed subsampling
- Applications
 - Hunt and test
 - Improving double machine learning
 - Testing no direct effect of a sequentially randomized trial
- Future directions

Harness extra randomness

© www.compoundchem.com

- Flexible goodness-of-fit e.g., quantile regression
- Missing data / imputation
- Causal inference & causal discovery
 - Observed distribution \rightarrow Intervened distribution

	Gene 1	Gene 2	Gene 3	
Cell 1	10	10	0	
Cell 2	0	15	4	
Cell 3	600	0	20	
•				

	Gene 1	Gene 2	Gene 3	
Cell 1	10	10	0	
Cell 2	0	15	4	
Cell 3	600	0	20	
:				

State of the art: cannot utilize generalized conditional independence.

	Gene 1	Gene 2	Gene 3	
Cell 1	10	10	0	
Cell 2	0	15	4	
Cell 3	600	0	20	
:				

State of the art: cannot utilize generalized conditional independence.

Generalized conditional independence can be very informative about the graph!

	Gene 1	Gene 2	Gene 3	
Cell 1	10	10	0	
Cell 2	0	15	4	
Cell 3	600	0	20	
:				

State of the art: cannot utilize generalized conditional independence.

Solution Generalized conditional independence can be very informative about the graph!

Uniquely identified (from ~30,000 possibilities) from one single generalized conditional independence constraint!

Robins. Interview with Jamie Robins. Observational Studies (2022).

- Flexible goodness-of-fit e.g., quantile regression
- Missing data / imputation
- Causal inference & causal discovery
 - Observed distribution \rightarrow Intervened distribution

- Flexible goodness-of-fit e.g., quantile regression
- Missing data / imputation
- Causal inference & causal discovery
 - Observed distribution \rightarrow Intervened distribution
- Bow much power can we hope to extract?

- Flexible goodness-of-fit e.g., quantile regression
- Missing data / imputation
- Causal inference & causal discovery
 - Observed distribution \rightarrow Intervened distribution
- How much power can we hope to extract?
- Replicability: computational statistical

$T_{n}^{(1)}$	$T_{n}^{(2)}$	$T_{n}^{(3)}$	$T_n^{(4)}$	 $T_n^{(L)}$	
*	**		*	*	$S = \operatorname{avg} \overline{\checkmark}$
			***		$S = \min \mathbf{\nabla}$

$T_{n}^{(1)}$	$T_{n}^{(2)}$	$T_{n}^{(3)}$	$T_{n}^{(4)}$	 $T_n^{(L)}$	
*	**		*	*	$S = \operatorname{avg} \overline{\checkmark}$
			***		$S = \min \mathbf{\nabla}$

	$T_n^{(1)} T_n^{(2)} $	$T_n^{(3)}$ $T_n^{(4)}$	* $S = \operatorname{avg} \checkmark$
		***	$S = \min \mathbf{\nabla}$
	$\widetilde{T}_m^{(1)}$	$\widetilde{T}_m^{(2)}$	• • •
	$T_m^{(1)}$ 1.6	-0.8	
	-1.1	-0.2	
	•	• • •	
	2.7	0.2	
Observed	$T_{n}^{(1)}$	$T_{n}^{(2)}$	• • •
	2.1	-1.2	

	$T_{n}^{(1)}$	$T_{n}^{(2)}$	$T_{n}^{(3)}$	$T_n^{(4)}$		$T_n^{(L)}$	$S = \operatorname{avg} \mathbf{\nabla}$
	*	**		*		*	$S = \operatorname{avg} \mathbf{\nabla}$
				***			$S = \min \mathbf{\nabla}$
	$\begin{array}{ c c } \widetilde{T}_m^{(1)} \\ \widetilde{T}_m^{(1)} \\ 1.6 \end{array}$			\widetilde{T}_{μ}^{0}	(2) n		• • •
	1.6			-0	.8		
	-1.1			-0	.2		
	• •			• • •			
	2.7			0.2	2		
Observed	$T_n^{(1)}$			$T_n^{(2)}$	2)		• • •
	2.1			-1.2	2		

	$T_{n}^{(1)}$	$T_{n}^{(2)}$	$T_{n}^{(3)}$	$T_{n}^{(4)}$		$T_n^{(L)}$	
	*	**		*		*	\bigcirc $S = \operatorname{avg} \checkmark$
				***			$S = \min \mathbf{\nabla}$
	$\widetilde{T}^{(1)}_{m}$)		\widetilde{T}_{r}^{0}	(2)		• • •
	$\begin{vmatrix} \widetilde{T}_m^{(1)} \\ 1.6 \end{vmatrix}$			-0			
	-1.1			-0	.2		
	•			• •			
	2.7			0.2	2		
Observed	$T_n^{(1)}$			$T_n^{(2)}$	2)		• • •
	2.1			-1.2	2		

	$T_n^{(1)} T_n^{(2)} \star \star \star$	$T_n^{(3)}$ $T_n^{(4)}$ *	$T_n^{(L)}$ $*$ $S = avg \checkmark$ $S = min \checkmark$
	$\widetilde{T}_{m}^{(1)}$ 1.6	$\widetilde{T}_m^{(2)}$	•••
	1.6	-0.8 -0.2	
	• •	• • •	
	2.7	0.2	
Observed	$T_n^{(1)}$	$T_n^{(2)}$	• • •
	2.1	-1.2	

 \mathbb{P} Allow the user to specify S^1, \ldots, S^W

 S^W

	$T_n^{(1)} T_n^{(2)} \star \star \star$	$T_n^{(3)}$ $T_n^{(4)}$	$T_n^{(L)} \qquad \bigcirc \\ * \qquad S = \operatorname{avg} \checkmark$
		***	$S = \min \mathbf{\nabla}$
	$\widetilde{T}_m^{(1)}$ 1.6	$\widetilde{T}_m^{(2)}$	• • •
	1.6	-0.8	
	-1.1	-0.2	
	•	0 0 0	
	2.7	0.2	
Observed	$T_{n}^{(1)}$	$T_{n}^{(2)}$	• • •
	2.1	-1.2	

Multiple aggregations: Adaptive algorithm

	$T_n^{(1)} T_n^{(2)} $	$T_n^{(3)}$ $T_n^{(4)}$	$T_n^{(L)}$ $* \qquad S = \text{avg } \checkmark$ $S = \min \checkmark$
	• $\widetilde{T}^{(1)}$	*** $\widetilde{T}_{m}^{(2)}$	S — IIIIII V
	$\widetilde{T}_m^{(1)}$ 1.6	-0.8	•••
	-1.1	-0.2	
	• •	• • •	
	2.7	0.2	
Observed	$T_{n}^{(1)}$	$T_{n}^{(2)}$	• • •
	2.1	-1.2	

 \mathbb{P} Allow the user to specify S^1, \ldots, S^W

Multiple aggregations: Adaptive algorithm

	$T_n^{(1)} T_n^{(2)} \\ * **$	$T_n^{(3)}$ $T_n^{(4)}$	$T_n^{(L)} \qquad \bigcirc \\ * \qquad S = \operatorname{avg} \checkmark$
		***	$S = \min \mathbf{\nabla}$
	$\widetilde{T}_m^{(1)}$ 1.6	$\widetilde{T}_m^{(2)}$	• • •
		-0.8	
	-1.1	-0.2	
	•	• •	
	2.7	0.2	
Observed	$T_{n}^{(1)}$	$T_{n}^{(2)}$	
	2.1	-1.2	• • •

 \mathbb{P} Allow the user to specify S^1, \ldots, S^W

Multiple aggregations: Adaptive algorithm

	$T_{n}^{(1)}$	$T_{n}^{(2)}$	$T_{n}^{(3)}$	$T_{n}^{(4)}$		$T_n^{(L)}$	
	*	**		*		*	$S = \operatorname{avg} \overline{\checkmark}$
				***			$S = \min \mathbf{\nabla}$
	$\widetilde{T}_m^{(1)}$			\widetilde{T}_{μ}^{0}	(2) n		• • •
	1.6			-0	.8		
	-1.1			-0	.2		
	• •			• • •			
	2.7			0.2	2		
Observed	$T_{n}^{(1)}$			$T_n^{(2)}$	2)		• • •
	2.1			-1.2	2		

 \mathbb{P} Allow the user to specify S^1, \ldots, S^W

Linear model $Y \sim \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p$

Linear model $Y \sim \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p$

Consider introducing a new covariate $X_{p+1} := \xi(X)$ for as a non-linear $\xi(\cdot)$.

Linear model $Y \sim \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p$

Consider introducing a new covariate $X_{p+1} := \xi(X)$ for as a non-linear $\xi(\cdot)$.

 \mathbb{P} If linear model is well-specified, then the should have $\beta_{p+1} = 0$ in

- $Y \sim \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \beta_{p+1} X_{p+1}.$

Linear model $Y \sim \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p$

Consider introducing a new covariate $X_{p+1} := \xi(X)$ for as a non-linear $\xi(\cdot)$.

 \mathbb{P} If linear model is well-specified, then the should have $\beta_{p+1} = 0$ in

← Test $\cap_{\xi} \{ H_0(\xi) : \beta_{p+1} = 0 \}.$

- $Y \sim \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \beta_{p+1} X_{p+1}.$

Linear model $Y \sim \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p$

Consider introducing a new covariate $X_{p+1} := \xi(X)$ for as a non-linear $\xi(\cdot)$.

 \mathbb{P} If linear model is well-specified, then the should have $\beta_{p+1} = 0$ in

← Test
$$\bigcap_{\xi} \{ H_0(\xi) : \beta_{p+1} = 0 \}.$$

- $Y \sim \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \beta_{p+1} X_{p+1}.$

Linear model $Y \sim \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p$

Consider introducing a new covariate $X_{p+1} := \xi(X)$ for as a non-linear $\xi(\cdot)$.

 \mathbb{P} If linear model is well-specified, then the should have $\beta_{p+1} = 0$ in

← Test
$$\cap_{\xi} \{ H_0(\xi) : \beta_{p+1} = 0 \}.$$

- $Y \sim \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \beta_{p+1} X_{p+1}.$

Hunt and test: Flexible goodness-of-fit Linear model $Y \sim \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p$ Consider introducing a new covariate $X_{p+1} := \xi(X)$ for as a non-linear $\xi(\cdot)$. \mathbb{P} If linear model is well-specified, then the should have $\beta_{p+1} = 0$ in $Y \sim \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \beta_{p+1} X_{p+1}.$ ← Test $\cap_{\xi} \{ H_0(\xi) : \beta_{p+1} = 0 \}.$

(1) Use **content** to find $\hat{\xi}$ such that $X_{p+1} = \xi(X)$ is likely to be "significant".

Hunt and test: Flexible goodness-of-fit Linear model $Y \sim \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p$ Consider introducing a new covariate $X_{p+1} := \xi(X)$ for as a non-linear $\xi(\cdot)$. \mathbb{P} If linear model is well-specified, then the should have $\beta_{p+1} = 0$ in $Y \sim \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \beta_{p+1} X_{p+1}.$ ← Test $\bigcap_{\xi} \{ H_0(\xi) : \beta_{p+1} = 0 \}.$ (1) Use **constant** to find $\hat{\xi}$ such that $X_{p+1} = \xi(X)$ is likely to be "significant". (2) Use **[10]** to compute a test statistic for $\beta_{p+1} = 0$. Use any existing device for parameter inference.

- $Y \sim \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \beta_{p+1} X_{p+1}.$

(1) Use **constant** to find $\hat{\xi}$ such that $X_{p+1} = \xi(X)$ is likely to be "significant".

(2) Use **[10]** to compute a test statistic for $\beta_{p+1} = 0$.

Use any existing device for parameter inference.

Jerome H. Friedman. Greedy function approximation: a gradient boosting machine. Annals of Statistics (2001).

- $Y \sim \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \beta_{p+1} X_{p+1}.$

(1) Use **constant** to find $\hat{\xi}$ such that $X_{p+1} = \xi(X)$ is likely to be "significant".

- (2) Use **[10]** to compute a test statistic for $\beta_{p+1} = 0$.
- Use any existing device for parameter inference.

Regression: min $\mathbb{E}l(Y - \beta^T X)$ for an **arbitrary** loss function $l(\cdot)$.

Regression: min $\mathbb{E}l(Y - \beta^T X)$ for an **arbitrary** loss function $l(\cdot)$.

Fitted $Y \sim \hat{\beta}^{\top} X$. With new covariate X_{p+1} ,

$$\sum_{i} l(Y_i - \hat{\beta}^{\mathsf{T}} X_i - \beta_{p+1} X_{i,p+1}) \approx \sum_{i} l(Y_i - \hat{\beta}^{\mathsf{T}} X_i) - \beta_i \sum_{i} l'(Y_i - \hat{\beta}^{\mathsf{T}} X_i) X_{i,p+1}$$

Regression: min $\mathbb{E}l(Y - \beta^T X)$ for an **arbitrary** loss function $l(\cdot)$.

Fitted $Y \sim \hat{\beta}^{\top} X$. With new covariate X_{p+1} ,

$$\sum_{i} l(Y_i - \hat{\beta}^\top X_i - \beta_{p+1} X_{i,p+1}) \approx \sum_{i} l(Y_i - \hat{\beta}^\top X_i) - \beta_i \sum_{i} l'(Y_i - \hat{\beta}^\top X_i) X_{i,p+1}$$

(1) On \square : Train any ML algorithm $\hat{\xi}$ to predict l'(resid) from X.

Regression: min $\mathbb{E}l(Y - \beta^T X)$ for an **arbitrary** loss function $l(\cdot)$.

Fitted $Y \sim \hat{\beta}^{\top} X$. With new covariate X_{p+1} ,

$$\sum_{i} l(Y_i - \hat{\beta}^\top X_i - \beta_{p+1} X_{i,p+1}) \approx \sum_{i} l(Y_i - \hat{\beta}^\top X_i) - \beta_i \sum_{i} l'(Y_i - \hat{\beta}^\top X_i) X_{i,p+1}$$

(1) On \square : Train any ML algorithm $\hat{\xi}$ to predict l'(resid) from X.

(2) On \square : Compute statistic for testing β_p

$$f_{p+1} = 0 \text{ in } Y \sim \beta^{\mathsf{T}} X + \beta_{p+1} \, \hat{\xi}(X).$$

Quantile regression

Quantile regression

1. Linear model is widely used.

Quantile regression

- 1. Linear model is widely used.
- 2. Developing goodness/lack-of-fit test is difficult.

e.g., Zheng (1998), Horowitz & Spokoiny (2002), He & Zhu (2003), Escanciano and Velasco (2010), Escanciano & Goh (2014).

- (1) Asymptotic theory of certain residual statistics/processes.
- (2) Performance deteriorates when p is moderate or large.

Quantile regression

- 1. Linear model is widely used.
- 2. Developing goodness/lack-of-fit test is difficult.

e.g., Zheng (1998), Horowitz & Spokoiny (2002), He & Zhu (2003), Escanciano and Velasco (2010), Escanciano & Goh (2014).

(1) Asymptotic theory of certain residual statistics/processes.

(2) Performance deteriorates when p is moderate or large.

3. Moderate/large *p*: active research.

e.g., Conde-Amboage et al. (2015), Dong et al. (2019).

Quantile regression

- 1. Linear model is widely used.
- 2. Developing goodness/lack-of-fit test is difficult.

e.g., Zheng (1998), Horowitz & Spokoiny (2002), He & Zhu (2003), Escanciano and Velasco (2010), Escanciano & Goh (2014).

(1) Asymptotic theory of certain residual statistics/processes.

(2) Performance deteriorates when *p* is moderate or large.

3. Moderate/large *p*: active research.

e.g., Conde-Amboage et al. (2015), Dong et al. (2019).

 ξ : random forest classifier sign(resid) ~ *X*.

 T_{n} : standard "t-value" from quant reg.

51

Quantile regression

- 1. Linear model is widely used.
- 2. Developing goodness/lack-of-fit test is difficult.

e.g., Zheng (1998), Horowitz & Spokoiny (2002), He & Zhu (2003), Escanciano and Velasco (2010), Escanciano & Goh (2014).

(1) Asymptotic theory of certain residual statistics/processes.

(2) Performance deteriorates when *p* is moderate or large.

3. Moderate/large *p*: active research.

e.g., Conde-Amboage et al. (2015), Dong et al. (2019).

 ξ : random forest classifier sign(resid) ~ X.

 T_{μ} : standard "t-value" from quant reg.

 $\tau = 0.5$ (median)

$$Y = 1 + \beta_0^{\mathsf{T}} X + 4 \mathbf{v} \, n^{-1/2} \sqrt{X_1^2 + X_2^2} + (1 + X_2 + X_3) \,\varepsilon$$

51

Quantile regression

- 1. Linear model is widely used.
- 2. Developing goodness/lack-of-fit test is difficult.

e.g., Zheng (1998), Horowitz & Spokoiny (2002), He & Zhu (2003), Escanciano and Velasco (2010), Escanciano & Goh (2014).

(1) Asymptotic theory of certain residual statistics/processes.

(2) Performance deteriorates when *p* is moderate or large.

3. Moderate/large *p*: active research.

e.g., Conde-Amboage et al. (2015), Dong et al. (2019).

 ξ : random forest classifier sign(resid) ~ X.

 T_{ν} : standard "t-value" from quant reg.

Chen Dong, Guodong Li, and Xingdong Feng. Lack-of-fit tests for quantile regression models. Journal of the Royal Statistical Society: Series B (2019). $\tau = 0.5$ (median)

$$Y = 1 + \beta_0^{\mathsf{T}} X + 4 \mathbf{v} \, n^{-1/2} \sqrt{X_1^2 + X_2^2} + (1 + X_2 + X_3) \,\varepsilon$$

