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Introduction



Confounder selection

In observational studies, the single most widely used to strategy to control for

confounding is through confounder / covariate adjustment.

▶ Suppose X is a (point) treatment and Y is an outcome.

☞ Adjust for a set of covariates S such that

Y (x) ⊥⊥ X | S , for every treatment level x . ▶ conditional exchangeability

☞ Then, under positivity,

p(Y (x) | X = x ,S) = p(Y | X = x ,S).

☞ Confounder selection: How to select S?
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Objectives

1. Primary: Finding a set of observed covariates S that satisfies conditional

exchangeability Y (x) ⊥⊥ X | S .
▶ Such a set is called a sufficient adjustment set.

2. Secondary: When there are more than one sufficient adjustment sets, choose one
among them to optimize some criterion, such as

• efficiency

• cardinality

• cost

• ...

☞ We only focus on the primary objective in this talk.

▶ See also Guo, Lundborg, and Zhao (2022) for a recent survey.
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A solved problem?

☞ Suppose we want to find a sufficient adjustment set in the causal model1 represented by a

DAG (▶ or ADMG) G over vertex set V.

Back-door Criterion (Pearl, 1993) S ⊆ V \{X ,Y } is a sufficient adjustment set if

1. S contains no descendant of X ,

2. there is no ‘X ← . . . ’ path between X and Y that is m-connected given S .

Completeness (Shpitser, VanderWeele, and Robins, 2010) If S is a sufficient adjustment set

under the causal model G, then S \ de(X ) satisfies the backdoor criterion.

▶ WLOG, we only consider adjustment sets that contain no descendants of X , then

S is a sufficient adjustment set ⇐⇒ S meets the back-door criterion.

1Formally, the FFRCISTG/SWIG model, which is a supermodel of NPSEM-IE.
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▶ “Suppose G is the causal DAG/ADMG ...”

https://xkcd.com/1339/
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Critiques on the ‘known G’ stance

1. Impractical

• Do not know the full causal structure/mechanism

• Even if we know it, can we readily draw it?

• Where is the boundary?

• Can you draw the floor plan of your home?

• Ask a domain expert to draw it

• Tools and protocols (Shrier and Platt, 2008; Haber et al., 2022) are developed, but

still challenging.

2. Unnecessary: Back-door criterion only concerns partial knowledge about G.

▶ Two questions

(i) Can we represent this partial knowledge in a modular format? (▶ representation)

(ii) How do we elicit this partial knowledge? (▶ procedure design)
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Earlier proposals

Disjunctive criterion (VanderWeele and Shpitser, 2011):

S := (anG(X ) ∪ anG(Y )) ∩ {observed pre-treatment covariates}.

▶ See also VanderWeele (2019) for its variation.

☞ Such S is a sufficient adjustment set whenever {observed pre-treatment covariates}
contains any sufficient adjustment set.

☞ Most useful when

(1) data is already collected,

(2) structural knowledge is scarce.
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Our approach in a nutshell
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(i) Can we represent this partial knowledge in a modular format? (▶ representation)

☞ Graph with bidirected edges: ‘ ’ denotes a (potential) confounding arc

(ii) How do we elicit this partial knowledge? (▶ procedure design)

☞ Select a confounding arc and introduce new variables (▶ primary adjustment set) to

control it. (▶ knowledge about common causes and mediators)

☞ Remove the old arc and adds new arcs.

☞ Iterate until X and Y are disconnected — a sufficient adjustment set is found!

(▶ inverse of latent projection) 10



Demo time



https://ricguo.shinyapps.io/InteractiveConfSel/

Example
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Features of the procedure

• Confounding arcs

: potential confounding arc

: uncontrollable confounding arc (▶ no primary adjustment set exists)

• To control , knowledge is elicited to find its primary adjustment set.

• Does not need pre-specification of the full graph.

• User answers questions about common causes and mediators. (▶ Local structures.)

• Economical queries: causal relations between the observed confounders are

irrelevant and never asked about!

• User’s familiarity with causal graphical models is not a prerequisite.

▶ Need not be aware of collider bias — it is taken care of!
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Features of the procedure

• Confounding arcs

: potential confounding arc;

: uncontrollable confounding arc

• To control , knowledge is elicited to find its primary adjustment set.

• Does not need pre-specification of the full graph.

• User answers questions about common causes and mediators. (▶ Local structures.)

• Economical queries: causal relations between the observed confounders are

irrelevant and never asked about!

• User’s familiarity with causal graphical models is not a prerequisite.

▶ Need not be aware of collider bias — it is taken care of!

• Procedure is terminated when X and Y are

▶ disconnected by / edges: a sufficient adjustment set is found;

▶ connected by edges: no sufficient adjustment set can be found.
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Theory



Setting

Let G be an underlying acyclic directed mixed graph (ADMG) over vertex set V that defines

our causal model.

▶ An ADMG is a graph with directed (→) and bidirected edges (↔) that has no directed cycle.

• ‘→’ represents a (direct) causal effect.

• ‘↔’ represents the existence of a latent common cause, i.e., endogeneity.

m-connection/separation (Richardson, 2003) is a direct extension of d-connection/separation:
▶ A path from A to B is m-connected given C if every non-collider on the path is not in C , and every collider

on the path is in C or has a descendant in C .

A ⊥⊥m B | C ⇐⇒ ∄m-connected path between A and B given C

A ̸⊥⊥m B | C ⇐⇒ ∃m-connected path between A and B given C

☞ Graph G is unknown. But we can make repeated queries about certain structures in G.
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Notation: shapes of paths

Arc ‘ ’ = a sequence of adjacent edges with no colliders

☞ Directed arc A B: A→ · · · → B

☞ Confounding arc A B:

A ← · · · → B or A ← · · · ← ◦ ↔ B or A ↔ ◦ → · · · → B or A ← · · · ↔ · · · → B

Half-arrow = either an endpoint tail or an endpoint head

☞ A B: A B or A B

☞ A B: A B or A B or A B

Wildcard ∗ = concatenation of arcs (▶ Imagine ‘∗’ as zero, one or more colliders)

☞ Confounding path A ∗ B: A B or A ◦ B or A ◦ . . . B

☞ A ∗ B: path of any shape between A and B
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Notation: refined m-connection

A ⟨shape⟩B | C ⇐⇒ ∃ a path of ⟨shape⟩ between A and B that is m-connected given C ,

A ⟨ ̸shape⟩B | C ⇐⇒ ∄ a path of ⟨shape⟩ between A and B that is m-connected given C .

(▶ When C = ∅, ‘A ⟨shape⟩B | ∅’ is not be shortened to ‘A ⟨shape⟩B’.)

☞ m-connection and m-separation (▶ ‘ ∗ ’ is a path of any shape)

A ∗ B | C ⇐⇒ A ̸⊥⊥m B | C and A ̸ ∗ B | C ⇐⇒ A ⊥⊥m B | C .

Refined m-connection

A

 ∗

B | C

‘ ’: confounding arc (▶ ‘ / ’ in our procedure)

‘ ∗ ’: confounding path
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Back-door criterion, reformulated

Back-door criterion, reformulated For any S ⊂ V \ de(X ),

S satisfies the back-door criterion ⇐⇒ X ̸ ∗ Y | S .

(▶ Suppose X Y in G.)

☞ This is complicated by collider bias

A ̸ ∗ B | C ≠⇒ A ̸ ∗ B | C ′, C ⊂ C ′.

☞ However, confounding arc is free of such issue

A ̸ B | C =⇒ A ̸ B | C ′, C ⊂ C ′.

As our notation suggests, any m-connected confounding path ‘ ∗ ’ is one or more

m-connected confounding arcs ‘ ’.

☞ Main idea: block all confounding paths by blocking confounding arcs, one at at a time.
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Primary adjustment set

Set C is a primary adjustment set for A,B relative to S if C ∩ (de(A) ∪ de(B)) = ∅ and

A ̸ B | S ,C .

When S = ∅, C is simply called a primary adjustment set for A,B.

(▶ S is a posited adjustment set)

☞ To block X ∗ Y | S , each time, we find a primary adjustment set for a constituent

confounding arc and add it to S .

▶ {X ,Y } ∪ S is growing — how do we keep track of confounding relations?
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Questions?

20



Latent projection

☞ Causal model represented by ADMG is closed under latent projection.

For V = Ṽ ∪U and Ṽ ∩U = ∅, let G(Ṽ) be the latent projection of G onto the margin Ṽ.

A


via U

via U

via U

B [G] ⇐⇒ A


→
←
↔

B [G(Ṽ)].

X U2 Y

L U1

X Y

L

=⇒
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Preservation of refined m-connection

m-connection is preserved by latent projection

A ∗ B | C [G(Ṽ)] ⇐⇒ A ∗ B | C [G], {A,B} ∪ C ⊆ Ṽ ⊆ V .

Theorem For any ADMG G over vertex set V and {A,B} ∪ C ⊆ Ṽ ⊇ V,

A

 ∗

B | C [G] ⇐⇒ A

 ∗

B | C [G(Ṽ )].

(▶ Relations induced by ̸ and ̸ ∗ are weaker than semi-graphoids.)

Corollary For A,B /∈ C ,

A

 ∗

B | C [G] ⇐⇒ A


→
↔

↔ ∗ ↔

B [G ({A,B} ∪ C )].
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Representation and procedure

District criterion

S is a sufficient adjustment set︸ ︷︷ ︸
block all back-door paths in G

⇐⇒ X ↮∗ ↔Y | S [G({X ,Y } ∪ S)]︸ ︷︷ ︸
connectivity by confounding arcs

.

☞ This leads to an explicit representation and a procedure.

• For a posited S , for every u, v ∈ S̄ := {X ,Y } ∪ S , maintain edges as m-connected

confounding arcs (▶ directed edges are irrelevant):

u v ⇐⇒ u v | S̄ \ {u, v}.

• An edge is initially drawn as a potential confounding arc ‘ ’.

If there exists a primary adjustment set to control it, the edge is removed;

Otherwise, the edge becomes an uncontrollable confounding arc ‘ ’.

• Primary adjustment set can be constructed from local knowledge about common causes

and mediators.
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1: R = {} ▷ Set of sufficient adjustment sets

2: Q = PriorityQueue((∅, ∅, ∅)) ▷ Initial graph has a possible edge X Y

3: while Q ̸= ∅ do

4: (S ,By ,Bn) = Pop(Q) ▷ Pop a graph with smallest min-cut(X ,Y )

5: S̄ = S ∪ {X ,Y }
6: if X ↔ ∗ ↔Y by edges in By then ▷ Fails the district criterion

7: continue

8: else if X ↮∗ ↔Y by edges in (S̄ × S̄) \ Bn then ▷ Satisfies the district criterion

9: R = R∪ {S}
10: continue

11: end if

12: (A,B) = π =SelectEdge(X , Y , S, By , Bn) ▷ π is selected from (S̄ × S̄) \ (By ∪ Bn)

13: L = FindPrimary((A,B); S \ {A,B})
14: if ∅ ∈ L then

15: Push(Q, (S, By , Bn ∪ {π})) ▷ π need not be expanded

16: else

17: for C ∈ L do

18: Push(Q, (S ∪ C , By , Bn ∪ {π})) ▷ Expand π by each primary adjustment set

19: end for

20: Push(Q, (S, By ∪ {π}, Bn)) ▷ Not to expand π

21: end if

22: end while

23: return R
24



Soundness and completeness

☞ If running the procedure exhaustively (▶ with a stack or a queue) with the input answered by

an oracle subroutine FindPrimary((A,B);S ′), the following can be shown.

Theorem Consider any two vertices X ,Y in an ADMG G such that X Y .

1. Soundness (primary ⇒ sufficiency): Suppose every C ∈ FindPrimary((A,B);S ′) is

a primary adjustment set for A,B given S ′ in G. Then every element in the output of

ConfounderSelect(X ,Y ) is a sufficient adjustment set for (X ,Y ).

2. Completeness (all minimal primary ⇒ all minimal sufficiency): Suppose further that

FindPrimary((A,B);S ′) contains all minimal primary adjustment sets for (A,B) given

S ′ in G. Then the output of ConfounderSelect(X ,Y ) contains all minimal sufficient

adjustment sets for (X ,Y ).

▶ ‘Minimal’: no proper subset is also a primary/sufficient adjustment set.
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Summary

• Confounding path ‘ ∗ ’ provides a structural definition of confounding.

▶ Confounding arcs ‘ ’ are the building blocks.

▶ Related: definition of a confounder (VanderWeele and Shpitser, 2013)

• Economical queries: causal relations between variables in S are never elicited.

• The user answers questions about common causes and mediators. Need not be aware

of collider bias.

▶ Compared to undirected graphs, colliders can be an extra complication to beginners in

graphical models.

▶ This was an issue of debate in the literature (Shrier, 2008; Rubin, 2009; Pearl, 2009; Sjölander, 2009).

• Moving away from the “known G” stance: typically, identification only relies on certain

partial knowledge the underlying causal graph.

▶ How to represent such knowledge? ▶ How to elicit it?

▶ More development is needed on how to use causal graphs to design a study.
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Give it a try!

https://ricguo.shinyapps.io/InteractiveConfSel/

arxiv: 2309.06053
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Graphoid-like properties

▶ Let J be a collection of tuples ⟨A,B | C⟩ for A,B,C that are disjoint subsets of a ground set V. For disjoint

A,B,C ,D ⊂ V, consider the following properties:

(i) triviality: ⟨A, ∅ | C⟩ for every disjoint A,C ⊂ V;

(ii) symmetry: ⟨A,B | C⟩ =⇒ ⟨B,A | C⟩;
(iii) decomposition: ⟨A,B ∪ C | D⟩ =⇒ ⟨A,B | D⟩ and ⟨A,C | D⟩;
(iv) weak union: ⟨A,B ∪ C | D⟩ =⇒ ⟨A,B | C ∪ D⟩;
(v) contraction: ⟨A,C | D⟩ and ⟨A,B | C ∪ D⟩ =⇒ ⟨A,B ∪ C | D⟩;
(vi) intersection: ⟨A,B | C ∪ D⟩ and ⟨A,C | B ∪ D⟩ =⇒ ⟨A,B ∪ C | D⟩;
(vii) composition: ⟨A,B | D⟩ and ⟨A,C | D⟩ =⇒ ⟨A,B ∪ C | D⟩.

We say J is a semi-graphoid over V, if it satisfies (i)–(v); further, we say J is a graphoid over V, if it satisfies

(i)–(vi), and finally, a compositional graphoid over V, if it satisfies (i)–(vii).

▶ m-separation J ̸∗ is a compositional graphoid (Sadeghi and Lauritzen, 2014).

☞ Relations

J ̸ := {⟨A,B | C ⟩ : A ̸ B | C [G]} and J ̸ ∗ := {⟨A,B | C ⟩ : A ̸ ∗ B | C [G]}
only satisfy properties (i)–(iv) and (vii).
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