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Introduction



Confounder selection

In observational studies, the single most widely used to strategy to control for

confounding is through confounder / covariate

» Suppose X is a (point) treatment and Y is an outcome.

1= Adjust for such that

Y(x) IL X | S, for every treatment level x. » conditional exchangeability

1= Then, under positivity,

p(Y(x) | X =x,5)=p(Y | X =Xx,S).

(= : How to select S7?



1. : Finding a set of covariates S that satisfies conditional
exchangeability Y(x) 1L X | S.
» Such a set is called a
2. Secondary: When there are more than one sufficient adjustment sets, choose one
among them to optimize some criterion, such as
e efficiency
e cardinality

® cost

1 \We only focus on the in this talk.

» See also Guo, Lundborg, and Zhao (2022) for a recent survey.



A solved problem?

i Suppose we want to find a sufficient adjustment set in the causal model® represented by a
DAG (» or ADMG) G over vertex set V.

(Pearl, 1993) S C V\{X, Y} is a sufficient adjustment set if

1. S contains no descendant of X,

2. there is no ‘X < ..." path between X and Y that is m-connected given S.

(Shpitser, VanderWeele, and Robins, 2010) If S is a sufficient adjustment set
under the causal model G, then S\ de(X) satisfies the backdoor criterion.

» WLOG, we only consider adjustment sets that contain of X, then

S is a sufficient adjustment set <= S meets the back-door criterion.

1Forma|ly, the FFRCISTG/SWIG model, which is a supermodel of NPSEM-IE.



» “Suppose G is the causal DAG/ADMG ...”

WI?IM?
YOU KNOW WHAT HAPPENS

WHEN YOU ASSUME—
I DONT
/ YET YOU'RE. CONFIDENTLY

ASSERTING THAT L DO.
y

]

https://xkcd.com/1339/


https://xkcd.com/1339/

Critiques on the ‘known G’ stance

e Do not know the full causal structure/mechanism
e Even if we know it, can we readily draw it?

e Where is the boundary?
e Can you draw the floor plan of your home?

e Ask a domain expert to draw it
e Tools and protocols (Shrier and Platt, 2008; Haber et al., 2022) are developed, but

still challenging.
2. . Back-door criterion only concerns about G.

>
(i) Can we represent this partial knowledge in a modular format? (» representation)
(ii) How do we elicit this partial knowledge? (» procedure design)



Earlier proposals

(VanderWeele and Shpitser, 2011):

S ;= (ang(X) Uang(Y)) N {observed pre-treatment covariates}.

» See also VanderWeele (2019) for its variation.

1= Such S is a whenever {observed pre-treatment covariates}
contains sufficient adjustment set.

> Most useful when

(1) data is already collected,

(2) structural knowledge is scarce.



Our approach in a nutshell

(i) Can we represent this partial knowledge in a modular format? (» representation)

1 Graph with bidirected edges: ‘< - > denotes a (potential)

(ii) How do we elicit this partial knowledge? (» procedure design)
= Select a confounding arc and introduce new variables (» ) to
control it. (» knowledge about and )
1 Remove the old arc and adds new arcs.
= |terate until X and Y are disconnected — a sufficient adjustment set is found!

(» inverse of latent projection) 10



Demo time



https://ricguo.shinyapps.io/InteractiveConfSel/

Example
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https://ricguo.shinyapps.io/InteractiveConfSel/

Features of the procedure

< ->: potential confounding arc
<—>: uncontrollable confounding arc  (» no primary adjustment set exists)

e To control <->, knowledge is elicited to find its

e Does not need pre-specification of the full graph.
e User answers questions about and . (» Local structures.)
° queries: causal relations between the observed confounders are

irrelevant and never asked about!

e User's familiarity with causal graphical models is a prerequisite.
» Need not be aware of — it is taken care of!

12
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Features of the procedure

<->: potential confounding arc;
<—>: uncontrollable confounding arc

e To control <«->, knowledge is elicited to find its
e Does not need pre-specification of the full graph.
e User answers questions about and . (» Local structures.)
° queries: causal relations between the observed confounders are
irrelevant and never asked about!

e User's familiarity with causal graphical models is a prerequisite.
» Need not be aware of — it is taken care of!
e Procedure is terminated when X and Y are

» disconnected by <-> /<— edges: a sufficient adjustment set is found;

» connected by <—> edges: no sufficient adjustment set can be found. 14



Theory



Setting

Let G be an underlying acyclic directed mixed graph (ADMG) over vertex set V that defines

our causal model.

» An ADMG is a graph with directed (—) and bidirected edges (<) that has no directed cycle.

e ‘' represents a (direct) causal effect.

e ‘' represents the existence of a latent common cause, i.e., endogeneity.

(Richardson, 2003) is a direct extension of d-connection /separation:
» A path from A to B is m-connected given C if every non-collider on the path is not in C, and every collider

on the path is in C or has a descendant in C.

AllmB|C <= Pm-connected path between A and B given C
AMl,B|C <= 3Im-connected path between A and B given C

1 Graph G is . But we can make about certain structures in G.

15



Notation: shapes of paths

‘~~~" = a sequence of adjacent edges with no colliders

= Directed arc A~~»B: A— --- = B
(= A« B:

A~ -+ >BorA+ -~ ¢+—o BoAro— - 2 BorA— -~ --- = B

= either an endpoint tail or an endpoint head
1w Asvs B: A B or Aevs B
= A4y, B: A~ B or Aevs Bor Ae~-B
* = concatenation of arcs  (» Imagine '+’ as zero, one or more colliders)

=5 Aevs ke B: Aervs Bor Aevsoéens Bor Aevsosnms ... 4w B
= A4~y k 4~y B: path of any shape between A and B

16



Notation: refined m-connection

A (shape) B | C <= 3 a path of (shape) between A and B that is m-connected given C,

A (shgpe) B | C <= P a path of (shape) between A and B that is m-connected given C.

(» When C =0, ‘A(shape) B | § is not be shortened to ‘A (shape) B'.)

= (» ‘“4~» x &~y' is a path of any shape)

Asvs k4 B|C <= AN, B|C and A4v ¥¢B|C «<— Al,B]|C.

A B|C

(» ‘<€ =->/<—>"in our procedure)

enr K G
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Back-door criterion, reformulated

For any S C V\ de(X),

S satisfies the back-door criterion <=  X<4w #<4» Y |S.

(» Suppose X ~» Y in G.)

1 This is complicated by
Aws £ewB|C =5 AewfewB|C, CcC.

1> However, is free of such issue

AssB|C = A«sB|C', CcC.
As our notation suggests, any m-connected confounding path ‘4~ x 4«~' is one or more
m-connected confounding arcs ‘¢~

=8 . block all confounding paths by , one at at a time. -



Primary adjustment set

Set Cisa for A, B Sif CN(de(A)Ude(B)) =0 and

AssB| S, C.

When S =0, C is simply called a primary adjustment set for A, B.

(» S is a posited adjustment set)

15 To block X ¢~ % v Y | S, each time, we find a primary adjustment set for a constituent

confounding arc and add it to S.

> {X,Y}US is growing — how do we keep track of confounding relations?

19



Questions?
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Latent projection

1= Causal model represented by ADMG is closed under

For V=VUUand VNU=0, let 9(\7) be the latent projection of G onto the margin V.

via/vgJ N
ALRIABIG = A« »BS(V)).

via U AN

o>

VANRVA
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Preservation of refined m-connection

Aans x 6y B C[S(V)] <= A4 xewB|C[S, {ABlUCCVCV.

For any ADMG G over vertex set V and {A,B} U C C VDoV,

> >
Al «w B|CI[S] <= A «» 3B|CI[S(V).
R N R

(» Relations induced by 4% and é~» ¥ 4~> are weaker than semi-graphoids.)

For A,B ¢ C,
~~> -
A o~y B|C[f] <= A < B[S ({A,B}UCC)].
Sd ko> ok >
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Representation and procedure

S is a sufficient adjustment set <= X<+ # < Y | S[S({X,Y}US)].

block all back-door paths in §

connectivity by confounding arcs

15 This leads to an explicit and a .
e For a posited S, for every u,v € S := {X, Y} U S, maintain as
(» directed edges are irrelevant):

us—v <= ussv|S\{u v}

e An edge is initially drawn as a potential confounding arc ‘< ->".

If there exists a to control it, the edge is removed;
Otherwise, the edge becomes an uncontrollable confounding arc ' <—>".

e Primary adjustment set can be constructed from local knowledge about

and 23



1: R={}

2: Q = PrRIORITYQUEUE(((, 0, 0))

3: while Q # () do

4: (S,By,B,) = Popr(Q)

5. S=SuU{X,Y}

6: if X <> % <> Y by edges in B, then

7: continue

8:  elseif X< # < Y by edges in (5 x 5)\ B, then
9: R =RU{S}

10: continue

11: end if

12: (A, B) = m =SELECTEDCE(X, Y, S, By, Bn)
13: L = FINDPRIMARY((A, B); S\ {A, B})
14: if 0 € £ then

15: PusH(Q, (S, By, B,U{r}))

16: else

17: for C € £ do

18: PusH(Q, (SUC, By, B,U{x}))
19: end for
20: PusH(Q, (S, By U{r}, Bn))
21: end if
22: end while

23: return R

> Set of sufficient adjustment sets
> Initial graph has a possible edge X € -> Y

> Pop a graph with smallest min-cut(X, Y)
> Fails the district criterion

> Satisfies the district criterion

> 7 is selected from (S x S§)\ (B, U B,)

> 7 need not be expanded

> Expand 7 by each primary adjustment set

> Not to expand 7

24



Soundness and completeness

= |f running the procedure (» with a stack or a queue) with the input answered by
an subroutine FINDPRIMARY((A, B); S’), the following can be shown.

Consider any two vertices X, Y in an ADMG G such that X ~» Y.

1. : Suppose every C € FINDPRIMARY((A, B); S') is
a primary adjustment set for A, B given S” in G. Then every element in the output of
CONFOUNDERSELECT(X, Y) is a sufficient adjustment set for (X, Y).

2. . Suppose further that
FINDPRIMARY/((A, B); S’) contains all minimal primary adjustment sets for (A, B) given
5" in G. Then the output of CONFOUNDERSELECT(X, Y') contains all minimal sufficient
adjustment sets for (X, Y).

» ‘Minimal’: no proper subset is also a primary/sufficient adjustment set.

25



Summary

e Confounding ‘4~> % ¢~ provides a structural definition of
» Confounding arcs '~ are the building blocks.
» Related: definition of a confounder (VanderWeele and Shpitser, 2013)

° . causal relations between variables in S are never elicited.

e The user answers questions about and . Need not be aware
of .
» Compared to undirected graphs, colliders can be an extra complication to beginners in
graphical models.
» This was an issue of debate in the literature (Shrier, 2008; Rubin, 2009; Pearl, 2009; Sjdlander, 2009).

e Moving away from the “known G" stance: typically, only relies on certain
the underlying causal graph.
» How to such knowledge? » How to elicit it?
» More development is needed on how to use causal graphs to a study.

26



Give it a try!

https://ricguo.shinyapps.io/InteractiveConfSel/

arxiv: 2309.06053
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Graphoid-like properties

» Let 7 be a collection of tuples (A, B | C) for A, B, C that are disjoint subsets of a ground set V. For disjoint
A,B,C,D C V, consider the following properties:

(i) triviality: (A,D | C) for every disjoint A,C C V;

(ii) symmetry: (A,B|C) = (B,A| C);

(iii) decomposition: (A,BU C | D) = (A,B | D) and (A, C | D);

(iv) weak union: (A,BUC | D) = (A,B| CUD);

(v) contraction: (A,C | D) and (A,B| CUD) = (A,BUC | D);

(vi) intersection: (A,B| CUD) and (A,C|BUD) — (A,BUC | D);
)

composition: (A, B | D) and (A,C | D) = (A,BUC | D).

We say J is a semi-graphoid over V, if it satisfies (i)—(v); further, we say J is a graphoid over V, if it satisfies
(i)=(vi), and finally, a compositional graphoid over V, if it satisfies (i)—(vii).

> m-separation Ja.s 4« iS @ compositional graphoid (Sadeghi and Lauritzen, 2014).
1 Relations

Teps = {(A,B| C): A5 B | C[S]} and Tews 4 s == {{A,B | C) : Asws ¥ < B | C [I]}
only satisfy properties (i)—(iv) and (vii).
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