Confounder selection via iterative graph expansion

F. Richard Guo

31 Oct, 2023 Online Causal Inference Seminar

Statistical Laboratory, University of Cambridge

Qingyuan Zhao

Introduction

Demo time

Theory

Introduction

In observational studies, the single most widely used to strategy to control for confounding is through confounder / covariate **adjustment**.

▶ Suppose X is a (point) treatment and Y is an outcome.

 \blacksquare Adjust for a set of covariates S such that

 $Y(x) \perp X \mid S$, for every treatment level x. \blacktriangleright conditional exchangeability

🖙 Then, under positivity,

$$p(Y(x) | X = x, S) = p(Y | X = x, S).$$

Confounder selection: How to select *S*?

- 1. **Primary**: Finding a set of **observed** covariates *S* that satisfies conditional exchangeability $Y(x) \perp \!\!\!\perp X \mid S$.
 - Such a set is called a sufficient adjustment set.
- 2. Secondary: When there are more than one sufficient adjustment sets, choose one among them to optimize some criterion, such as
 - efficiency
 - cardinality
 - cost
 - ...

We only focus on the **primary objective** in this talk.

▶ See also Guo, Lundborg, and Zhao (2022) for a recent survey.

A solved problem?

Suppose we want to find a sufficient adjustment set in the causal model¹ represented by a DAG (\triangleright or ADMG) \mathcal{G} over vertex set V.

Back-door Criterion (Pearl, 1993) $S \subseteq V \setminus \{X, Y\}$ is a sufficient adjustment set if

1. S contains no descendant of X,

2. there is no ' $X \leftarrow \ldots$ ' path between X and Y that is m-connected given S.

Completeness (Shpitser, VanderWeele, and Robins, 2010) If S is a sufficient adjustment set under the causal model \mathcal{G} , then $S \setminus de(X)$ satisfies the backdoor criterion.

▶ WLOG, we only consider adjustment sets that contain **no descendants** of X, then

S is a sufficient adjustment set \iff S meets the back-door criterion.

¹Formally, the FFRCISTG/SWIG model, which is a supermodel of NPSEM-IE.

▶ "Suppose *G* is the causal DAG/ADMG ..."

1. Impractical

- Do not know the full causal structure/mechanism
- Even if we know it, can we readily draw it?
 - Where is the boundary?
 - Can you draw the floor plan of your home?
- Ask a domain expert to draw it
 - Tools and protocols (Shrier and Platt, 2008; Haber et al., 2022) are developed, but still challenging.
- 2. Unnecessary: Back-door criterion only concerns partial knowledge about 9.

Two questions

- (i) Can we represent this partial knowledge in a modular format? (▶ representation)
- (ii) How do we elicit this partial knowledge? (> procedure design)

Earlier proposals

Disjunctive criterion (VanderWeele and Shpitser, 2011):

 $S := (\operatorname{an}_{\mathfrak{G}}(X) \cup \operatorname{an}_{\mathfrak{G}}(Y)) \cap \{ \text{observed pre-treatment covariates} \}.$

▶ See also VanderWeele (2019) for its variation.

Such *S* is a sufficient adjustment set whenever {observed pre-treatment covariates} contains any sufficient adjustment set.

Most useful when

- (1) data is already collected,
- (2) structural knowledge is scarce.

Our approach in a nutshell

- (i) Can we represent this partial knowledge in a modular format? (▶ representation)
 ^{III} Graph with bidirected edges: '← → ' denotes a (potential) confounding arc
- (ii) How do we elicit this partial knowledge? (> procedure design)
 - Select a confounding arc and introduce new variables (> primary adjustment set) to control it. (> knowledge about common causes and mediators)
 Remove the old arc and adds new arcs.
 - Iterate until X and Y are disconnected a sufficient adjustment set is found!
 - (inverse of latent projection)

Demo time

https://ricguo.shinyapps.io/InteractiveConfSel/

Example

Features of the procedure

- Confounding arcs
 - ← →: potential confounding arc
 - : uncontrollable confounding arc (> no primary adjustment set exists)
- To control <->, knowledge is elicited to find its primary adjustment set.
 - Does not need pre-specification of the full graph.
 - User answers questions about common causes and mediators. (> Local structures.)
 - Economical queries: causal relations between the observed confounders are irrelevant and never asked about!
- User's familiarity with causal graphical models is not a prerequisite.
 - ▶ Need not be aware of **collider bias** it is taken care of!

Features of the procedure

• Confounding arcs

- + >: potential confounding arc;
- \longleftrightarrow : uncontrollable confounding arc
- To control <->, knowledge is elicited to find its primary adjustment set.
 - Does not need pre-specification of the full graph.
 - User answers questions about common causes and mediators. (> Local structures.)
 - Economical queries: causal relations between the observed confounders are irrelevant and never asked about!
- User's familiarity with causal graphical models is not a prerequisite.
 - Need not be aware of collider bias it is taken care of!
- Procedure is terminated when X and Y are
 - ► disconnected by <-> / <-> edges: a sufficient adjustment set is found;
 - \blacktriangleright connected by \longleftrightarrow edges: no sufficient adjustment set can be found.

Theory

Setting

Let \mathcal{G} be an underlying acyclic directed mixed graph (ADMG) over vertex set V that defines our causal model.

- ▶ An ADMG is a graph with directed (\rightarrow) and bidirected edges (\leftrightarrow) that has no directed cycle.
 - ' \rightarrow ' represents a (direct) causal effect.
 - ' \leftrightarrow ' represents the existence of a latent common cause, i.e., *endogeneity*.

m-connection/separation (Richardson, 2003) is a direct extension of d-connection/separation: A path from A to B is m-connected given C if every non-collider on the path is not in C, and every collider on the path is in C or has a descendant in C.

 $A \perp _m B \mid C \iff \nexists$ m-connected path between A and B given C

 $A \not \perp_m B \mid C \iff \exists m$ -connected path between A and B given C

so Graph \mathcal{G} is unknown. But we can make repeated queries about certain structures in \mathcal{G} .

Notation: shapes of paths

Arc '----' = a sequence of adjacent edges with no colliders

$$\blacksquare Directed arc A \dashrightarrow B: A \to \cdots \to B$$

Confounding arc $A \leftrightarrow B$:

 $A \leftarrow \cdots \rightarrow B \text{ or } A \leftarrow \cdots \leftarrow \circ \leftrightarrow B \text{ or } A \leftrightarrow \circ \rightarrow \cdots \rightarrow B \text{ or } A \leftarrow \cdots \leftrightarrow \cdots \rightarrow B$

Half-arrow = either an endpoint tail or an endpoint head

Wildcard * = concatenation of arcs (> Imagine '*' as zero, one or more colliders)

 $A \langle shape \rangle B \mid C \iff \exists a \text{ path of } \langle shape \rangle \text{ between } A \text{ and } B \text{ that is m-connected given } C,$ $A \langle shape \rangle B \mid C \iff \nexists a \text{ path of } \langle shape \rangle \text{ between } A \text{ and } B \text{ that is m-connected given } C.$

(When $C = \emptyset$, 'A (shape) $B \mid \emptyset$ ' is not be shortened to 'A (shape) B'.)

■ m-connection and m-separation (► '↔ * ↔ * ↔ ' is a path of any shape)

 $A \nleftrightarrow * \nleftrightarrow B \mid C \iff A \not\perp_m B \mid C \text{ and } A \nleftrightarrow * \bigstar B \mid C \iff A \perp_m B \mid C.$

Refined m-connection

$$A \begin{cases} \xrightarrow{} & & \\ &$$

' \leftrightarrow ': confounding arc (\triangleright ' \leftarrow - \rightarrow / \leftrightarrow ' in our procedure) ' \leftrightarrow * \leftrightarrow ': confounding path

Back-door criterion, reformulated

Back-door criterion, reformulated For any $S \subset V \setminus de(X)$, S satisfies the back-door criterion $\iff X \iff \neq \iff Y \mid S$. (• Suppose $X \dashrightarrow Y$ in 9.)

This is complicated by collider bias

$$A \longleftrightarrow \not \ast \Longleftrightarrow B \mid C \quad \Longrightarrow \quad A \Longleftrightarrow \not \ast \Longleftrightarrow B \mid C', \quad C \subset C'.$$

Bowever, confounding arc is free of such issue

$$A \nleftrightarrow B \mid C \implies A \nleftrightarrow B \mid C', \quad C \subset C'.$$

As our notation suggests, any m-connected confounding path ' $\leftrightarrow \ast \ast \leftrightarrow$ ' is one or more m-connected confounding arcs ' $\leftrightarrow \diamond$ '.

Main idea: block all confounding paths by blocking confounding arcs, one at at a time.

Primary adjustment set

Set C is a primary adjustment set for A, B relative to S if $C \cap (de(A) \cup de(B)) = \emptyset$ and

 $A \nleftrightarrow B \mid S, C.$

When $S = \emptyset$, C is simply called a primary adjustment set for A, B. (> S is a posited adjustment set)

To block $X \leftrightarrow * \leftrightarrow Y \mid S$, each time, we find a primary adjustment set for a constituent confounding arc and add it to S.

▶ $\{X, Y\} \cup S$ is growing — how do we keep track of confounding relations?

Questions?

Latent projection

Second contract of the second contract of the

For $V = \tilde{V} \cup U$ and $\tilde{V} \cap U = \emptyset$, let $\mathcal{G}(\tilde{V})$ be the latent projection of \mathcal{G} onto the margin \tilde{V} .

$$A \begin{cases} \stackrel{\text{via U}}{\longleftrightarrow} \\ \stackrel{\text{via U}}{\longleftrightarrow} \\ \stackrel{\text{via U}}{\longleftrightarrow} \end{cases} B [\mathfrak{G}] \quad \iff \quad A \begin{cases} \rightarrow \\ \leftarrow \\ \leftrightarrow \end{cases} B [\mathfrak{G}(\tilde{V})].$$

Preservation of refined m-connection

m-connection is preserved by latent projection

$$A \nleftrightarrow \ast \nleftrightarrow B \mid C \ [\mathfrak{G}(\tilde{\mathrm{V}})] \quad \Longleftrightarrow \quad A \nleftrightarrow \ast \bigstar B \mid C \ [\mathfrak{G}], \quad \{A, B\} \cup C \subseteq \tilde{\mathrm{V}} \subseteq \mathrm{V}.$$

Theorem For any ADMG \mathcal{G} over vertex set V and $\{A, B\} \cup C \subseteq \tilde{V} \supseteq V$,

(Relations induced by \checkmark and \checkmark and \diamond are weaker than semi-graphoids.)

Corollary For
$$A, B \notin C$$
,

$$A \begin{cases} \xrightarrow{\longrightarrow} \\ \xleftarrow{\longrightarrow} \\ \xleftarrow{\longrightarrow} \\ \xleftarrow{\longrightarrow} \\ \end{aligned}} B \mid C [\mathfrak{G}] \iff A \begin{cases} \xrightarrow{\rightarrow} \\ \leftrightarrow \\ \leftrightarrow \\ \leftrightarrow \\ \end{aligned}} B [\mathfrak{G}(\{A, B\} \cup C)].$$

District criterion

$$\underbrace{S \text{ is a sufficient adjustment set}}_{\text{block all back-door paths in } \mathcal{G}} \iff \underbrace{X \leftrightarrow \not \ast \leftrightarrow Y \mid S\left[\mathcal{G}(\{X,Y\} \cup S)\right]}_{\text{connectivity by confounding arcs}}.$$

This leads to an explicit representation and a procedure.

For a posited S, for every u, v ∈ S̄ := {X, Y} ∪ S, maintain edges as m-connected confounding arcs (▶ directed edges are irrelevant):

$$u \longleftrightarrow v \iff u \Longleftrightarrow v \mid \overline{S} \setminus \{u, v\}.$$

- An edge is initially drawn as a potential confounding arc ' < > '.
 If there exists a primary adjustment set to control it, the edge is removed;
 Otherwise, the edge becomes an uncontrollable confounding arc ' <-> '.
- Primary adjustment set can be constructed from local knowledge about common causes and mediators.

1: $\mathcal{R} = \{\}$ ▷ Set of sufficient adjustment sets 2: $Q = PRIORITYQUEUE((\emptyset, \emptyset, \emptyset))$ \triangleright Initial graph has a possible edge $X \leftarrow \neg \Rightarrow Y$ 3: while $\mathcal{Q} \neq \emptyset$ do 4: $(S, \mathcal{B}_{v}, \mathcal{B}_{n}) = \operatorname{Pop}(\mathcal{Q})$ \triangleright Pop a graph with smallest min-cut(X, Y) 5: $\bar{S} = S \cup \{X, Y\}$ 6: if $X \leftrightarrow * \leftrightarrow Y$ by edges in \mathcal{B}_{v} then Fails the district criterion 7: continue 8: else if $X \leftrightarrow \# \leftrightarrow Y$ by edges in $(\bar{S} \times \bar{S}) \setminus \mathcal{B}_n$ then Satisfies the district criterion 9: $\mathcal{R} = \mathcal{R} \cup \{S\}$ 10: continue 11:end if 12: $(A, B) = \pi = \text{SELECTEDGE}(X, Y, S, \mathcal{B}_{v}, \mathcal{B}_{n})$ $\triangleright \pi$ is selected from $(\bar{S} \times \bar{S}) \setminus (\mathcal{B}_v \cup \mathcal{B}_n)$ 13: $\mathcal{L} = \text{FINDPRIMARY}((A, B); S \setminus \{A, B\})$ 14: if $\emptyset \in \mathcal{L}$ then 15: PUSH(\mathcal{Q} , $(S, \mathcal{B}_{v}, \mathcal{B}_{n} \cup \{\pi\})$) $\triangleright \pi$ need not be expanded 16: else 17: for $C \in C$ do 18: PUSH(\mathcal{Q} , $(S \cup C, \mathcal{B}_{v}, \mathcal{B}_{n} \cup \{\pi\})$) \triangleright Expand π by each primary adjustment set 19. end for 20: PUSH(\mathcal{Q} , $(S, \mathcal{B}_{v} \cup \{\pi\}, \mathcal{B}_{n})$) \triangleright Not to expand π 21: end if 22: end while 23: return \mathcal{R}

24

If running the procedure **exhaustively** (\triangleright with a stack or a queue) with the input answered by an **oracle** subroutine FINDPRIMARY((A, B); S'), the following can be shown.

Theorem Consider any two vertices X, Y in an ADMG \mathcal{G} such that $X \rightsquigarrow Y$.

- 1. Soundness (primary \Rightarrow sufficiency): Suppose every $C \in \text{FINDPRIMARY}((A, B); S')$ is a primary adjustment set for A, B given S' in \mathcal{G} . Then every element in the output of CONFOUNDERSELECT(X, Y) is a sufficient adjustment set for (X, Y).
- 2. Completeness (all minimal primary \Rightarrow all minimal sufficiency): Suppose further that FINDPRIMARY((A, B); S') contains all minimal primary adjustment sets for (A, B) given S' in \mathcal{G} . Then the output of CONFOUNDERSELECT(X, Y) contains all minimal sufficient adjustment sets for (X, Y).

'Minimal': no proper subset is also a primary/sufficient adjustment set.

Summary

- Confounding **path** ' $\leftrightarrow \ast \leftrightarrow \Rightarrow$ ' provides a structural definition of **confounding**.
 - ► Confounding arcs '↔→' are the building blocks.
 - ▶ Related: definition of a confounder (VanderWeele and Shpitser, 2013)
- Economical queries: causal relations between variables in S are never elicited.
- The user answers questions about **common causes** and **mediators**. Need not be aware of **collider bias**.
 - ► Compared to undirected graphs, colliders can be an extra complication to beginners in graphical models.
 - ▶ This was an issue of debate in the literature (Shrier, 2008; Rubin, 2009; Pearl, 2009; Sjölander, 2009).
- Moving away from the "known G" stance: typically, **identification** only relies on certain **partial knowledge** the underlying causal graph.
 - How to represent such knowledge? > How to elicit it?
 - ▶ More development is needed on how to use causal graphs to design a study.

Give it a try! https://ricguo.shinyapps.io/InteractiveConfSel/

arxiv: 2309.06053

References i

References

Guo, F. Richard, Anton Rask Lundborg, and Qingyuan Zhao (2022). "Confounder Selection: Objectives and Approaches". In: arXiv preprint arXiv:2208.13871.
 Pearl, Judea (1993). "Comment: graphical models, causality and intervention". In: Statistical Science 8.3, pp. 266–269.

Shpitser, Ilya, Tyler J. VanderWeele, and James M. Robins (2010). "On the validity of covariate adjustment for estimating causal effects". In: *Proceedings* of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence. UAI'10. Arlington, Virginia, USA: AUAI Press, pp. 527–536.

References ii

- Shrier, Ian and Robert W Platt (2008). "Reducing bias through directed acyclic graphs". In: *BMC Medical Research Methodology* 8, pp. 1–15.
- Haber, Noah A et al. (2022). "DAG With Omitted Objects Displayed (DAGWOOD): a framework for revealing causal assumptions in DAGs". In: Annals of Epidemiology 68, pp. 64–71.
- VanderWeele, Tyler J. and Ilya Shpitser (2011). **"A new criterion for confounder selection".** In: *Biometrics* 67.4, pp. 1406–1413.
- VanderWeele, Tyler J. (2019). "Principles of confounder selection". In: European Journal of Epidemiology 34.3, pp. 211–219.
- Richardson, Thomas S. (2003). "Markov Properties for Acyclic Directed Mixed Graphs". In: Scandinavian Journal of Statistics 30.1, pp. 145–157.

References iii

- VanderWeele, Tyler J. and Ilya Shpitser (2013). "On the Definition of a Confounder". In: The Annals of Statistics 41.1, pp. 196–220.
- Shrier, Ian (2008). "Letter to the Editor". In: *Statistics in Medicine* 27.14, pp. 2740–2741.
- Rubin, Donald B. (2009). "Should observational studies be designed to allow lack of balance in covariate distributions across treatment groups?" In: Statistics in Medicine 28.9, pp. 1420–1423.
- Pearl, Judea (2009). "Remarks on the method of propensity score". In: Statistics in Medicine 28.9, pp. 1415–1416.
- Sjölander, Arvid (2009). "Propensity scores and M-structures". In: Statistics in Medicine 28.9, pp. 1416–1420.

References iv

Sadeghi, Kayvan and Steffen Lauritzen (2014). "Markov properties for mixed graphs". In: *Bernoulli* 20.2, pp. 676–696.

Graphoid-like properties

▶ Let \mathcal{J} be a collection of tuples $\langle A, B | C \rangle$ for A, B, C that are disjoint subsets of a ground set V. For disjoint $A, B, C, D \subset V$, consider the following properties:

(i) triviality:
$$\langle A, \emptyset | C \rangle$$
 for every disjoint $A, C \subset V$;

- (ii) symmetry: $\langle A, B \mid C \rangle \implies \langle B, A \mid C \rangle$;
- (iii) decomposition: $\langle A, B \cup C \mid D \rangle \implies \langle A, B \mid D \rangle$ and $\langle A, C \mid D \rangle$;
- (iv) weak union: $\langle A, B \cup C \mid D \rangle \implies \langle A, B \mid C \cup D \rangle$;
- (v) contraction: $\langle A, C \mid D \rangle$ and $\langle A, B \mid C \cup D \rangle \implies \langle A, B \cup C \mid D \rangle$;
- (vi) intersection: $\langle A, B \mid C \cup D \rangle$ and $\langle A, C \mid B \cup D \rangle \implies \langle A, B \cup C \mid D \rangle$;
- (vii) composition: $\langle A, B \mid D \rangle$ and $\langle A, C \mid D \rangle \implies \langle A, B \cup C \mid D \rangle$.

We say \mathcal{J} is a *semi-graphoid* over V, if it satisfies (i)–(v); further, we say \mathcal{J} is a *graphoid* over V, if it satisfies (i)–(vi), and finally, a *compositional graphoid* over V, if it satisfies (i)–(vii).

• m-separation $\mathcal{J}_{AAA} \neq AAAA$ is a compositional graphoid (Sadeghi and Lauritzen, 2014).

Relations

 $\mathcal{J}_{\nleftrightarrow} := \{ \langle A, B \mid C \rangle : A \nleftrightarrow B \mid C [\mathcal{G}] \} \text{ and } \mathcal{J}_{\nleftrightarrow} \neq \nleftrightarrow := \{ \langle A, B \mid C \rangle : A \nleftrightarrow \not \Rightarrow \forall H \mid C [\mathcal{G}] \}$ only satisfy properties (i)–(iv) and (vii).