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= Concretely, ¢zy|x is a
Vx, (z,y) = ¢zvix(z,y | x) is a density over [0, 1]? with uniform margins.
1 Factorization A:

pzxy(z,x,y) = p(x) p(z | x) p(y | x) ¢ZY|X(F(Z | x), F(y | x) | x)

=|pzx(z,x) PY|X(y | x) ¢ZY\X(F(Z | x), F(y | x) | x).
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But we are not directly interested in Pzxy, but, rather a (causal) distribution P,

related to Pzxy.

>

p*(Z,X,Y) _
Wz X, v) ~exiP)

such that

(1) r(z,x;p) > 0 strictly positive almost everywhere; & This ensures p/p* = r~1.

(2) r does not depend on Y;
(3) r can be identified from Pzxy .

1= By integrating out y on both sides of p*(z,x,y) = r(z, x; p)p(z, x, y),

PA2X) ety ) 2,x) = ply | 2,%).

(exP) = 3




Choosing parametrization

-1 A71
(Pzx, Py|z x) — Pzxy —— (Pzx, Py|x: ¢zv|x)

C71 A1
* * — * _ * * *
('DZX7 PY\Z,X) — P7xy — (’DZX7 PY|X7 ¢ZY\X)

i \We parametrize pzxy (and hence Py, ) with in this diagram.
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Frugal parametrization

-1

C AL
(Pzx, Py|z,x) — Pzxy <L (, Py|x ¢ZY\X>

-1 —1
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(PZX’PY\Z,X) T> PZXY <T (PZX’
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* *
Pyix | | 2Zvix

ww Using r(z, x; p) = p*(z,x)/p(z, x), we get
_P(z,xy) _ Alp*(z,x),p"(y | x), 9" (2,y | X))
Pz, x.y) = r(z,x) r(z,x; p)
Az xip). (v [ X067z [ X))
r(z,x; p)
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p(A,B,LY) (A, B,L,Y)

We choose X = (A,B), Z=Land Y =Y.

With density ratio r(a, /, b; p) = p(b)/p(b | a,1), we can parametrize

P(A,L,B,Y) ( Pyias: Ovijas)

A~ 1
P*(A,L,B,Y) f <P2Lsa PY\a6

N——

*
PyiiaB




Example: Structural nested model

With r = 1, this is a more direct parametrization

=1 =1l

(7 PY\Z,X) C; Pzxy A? (Pzx: Py|x, zv|x)

C

C71 -1
* * — * _ * * *
(’DZX7 Y|Z,X ) = Py — (PZ ) 'DY\X‘/ ¢zy|x)
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c-1 A1
(Pzocx> Py|z,,c.x) T Pzycxy <T> ( Pz,cx |, Pyic xs ¢Yzo\c,x)

‘Wzo\c,x

N———

* * — * _ * *
(PZOCX’ Pv\zo,c,x) — PZycxy — ('DZUCX7 'Dy|c,x




» The cognate definition essentially requires choosing

w(z | x)
r(z,xip) = L2
p(z | x)
for some kernel w(z | x).
1= But formulating it in terms of density ratio is perhaps more ?
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