Two Factorizations and a Density Ratio

On 'Parameterizing and Simulating from Causal Models' by Evans and Didelez

F. Richard Guo

RSS Discussion Meeting, 3 Oct, 2023

Statistical Laboratory, Cambridge

Suppose we partition a random vector as (X, Y, Z). Any distribution over (X, Y, Z) can be factorized in two ways:

$$\left(P_{ZX}, P_{Y|Z,X}\right) \overset{C^{-1}}{\underset{C}{\rightleftharpoons}} P_{ZXY} \overset{A^{-1}}{\underset{A}{\rightleftharpoons}} \left(P_{ZX}, P_{Y|X}, \phi_{ZY|X}\right).$$

Suppose we partition a random vector as (X, Y, Z). Any distribution over (X, Y, Z) can be factorized in two ways:

$$\left(P_{ZX}, P_{Y|Z,X}\right) \overset{C^{-1}}{\underset{C}{\rightleftharpoons}} P_{ZXY} \overset{A^{-1}}{\underset{A}{\rightleftharpoons}} \left(P_{ZX}, P_{Y|X}, \phi_{ZY|X}\right).$$

▶ C is the 'usual' factorization; A is the focus of Evans and Didelez.

Suppose we partition a random vector as (X, Y, Z). Any distribution over (X, Y, Z) can be factorized in two ways:

$$\left(P_{ZX}, P_{Y|Z,X}\right) \stackrel{C^{-1}}{\underset{C}{\rightleftharpoons}} P_{ZXY} \stackrel{A^{-1}}{\underset{A}{\rightleftharpoons}} \left(P_{ZX}, P_{Y|X}, \phi_{ZY|X}\right).$$

- ▶ C is the 'usual' factorization; A is the focus of Evans and Didelez.
- - $\forall x, (z,y) \mapsto \phi_{ZY|X}(z,y \mid x)$ is a density over $[0,1]^2$ with uniform margins.

Suppose we partition a random vector as (X, Y, Z). Any distribution over (X, Y, Z) can be factorized in two ways:

$$\left(P_{ZX}, P_{Y|Z,X}\right) \stackrel{C^{-1}}{\underset{C}{\rightleftharpoons}} P_{ZXY} \stackrel{A^{-1}}{\underset{A}{\rightleftharpoons}} \left(P_{ZX}, P_{Y|X}, \phi_{ZY|X}\right).$$

- ▶ C is the 'usual' factorization; A is the focus of Evans and Didelez.

$$\forall x, (z,y) \mapsto \phi_{ZY|X}(z,y \mid x)$$
 is a density over $[0,1]^2$ with uniform margins.

Factorization *A*:

$$p_{ZXY}(z, x, y) = p(x) p(z \mid x) p(y \mid x) \phi_{ZY|X}(F(z \mid x), F(y \mid x) \mid x)$$
$$= p_{ZX}(z, x) p_{Y|X}(y \mid x) \phi_{ZY|X}(F(z \mid x), F(y \mid x) \mid x).$$

But we are not directly interested in P_{ZXY} , but, rather a (causal) distribution P_{ZXY}^* related to P_{ZXY} .

But we are not directly interested in P_{ZXY} , but, rather a (causal) distribution P_{ZXY}^* related to P_{ZXY} .

▶ Density ratio

$$\frac{p^*(Z,X,Y)}{p(Z,X,Y)} = r(z,x;p)$$

such that

- (1) r(z, x; p) > 0 strictly positive almost everywhere; $rac{1}{2}$ This ensures $p/p^* = r^{-1}$.
- (2) r does not depend on Y;
- (3) r can be identified from P_{ZXY} .

But we are not directly interested in P_{ZXY} , but, rather a (causal) distribution P_{ZXY}^* related to P_{ZXY} .

▶ Density ratio

$$\frac{p^*(Z,X,Y)}{p(Z,X,Y)}=r(z,x;p)$$

such that

- (1) r(z, x; p) > 0 strictly positive almost everywhere; $rac{1}{2}$ This ensures $p/p^* = r^{-1}$.
- (2) r does not depend on Y;
- (3) r can be identified from P_{ZXY} .

By integrating out y on both sides of $p^*(z, x, y) = r(z, x; p)p(z, x, y)$,

$$r(z,x;p) = \frac{p^*(z,x)}{p(z,x)}, \quad p^*(y \mid z,x) = p(y \mid z,x).$$

Choosing parametrization

$$\begin{pmatrix}
P_{ZX}, P_{Y|Z,X} \rangle & \xrightarrow{C^{-1}} & P_{ZXY} & \xrightarrow{A^{-1}} & \left(P_{ZX}, P_{Y|X}, \phi_{ZY|X}\right) \\
\downarrow & \uparrow & \downarrow r \\
\downarrow r & \downarrow r \\
\begin{pmatrix}
P_{ZX}^*, P_{Y|Z,X}^* \rangle & \xrightarrow{C^{-1}} & P_{ZXY}^* & \xrightarrow{A^{-1}} & \left(P_{ZX}^*, P_{Y|X}^*, \phi_{ZY|X}^*\right)
\end{pmatrix}$$

We parametrize p_{ZXY} (and hence P_{ZXY}^*) with components in this diagram.

4

Frugal parametrization

$$\left(P_{ZX}, P_{Y|Z,X}\right) \xrightarrow{C^{-1}} P_{ZXY} \xrightarrow{A^{-1}} \left(\boxed{P_{ZX}}, P_{Y|X}, \phi_{ZY|X}\right)$$

$$\left(P_{ZX}^*, P_{Y|Z,X}^*\right) \xrightarrow{C^{-1}} P_{ZXY}^* \xrightarrow{A^{-1}} \left(P_{ZX}^*, \boxed{P_{Y|X}^*}, \boxed{\phi_{ZY|X}^*}\right)$$

Frugal parametrization

$$\left(P_{ZX}, P_{Y|Z,X}\right) \xrightarrow{C^{-1}} P_{ZXY} \xrightarrow{A^{-1}} \left(\boxed{P_{ZX}}, P_{Y|X}, \phi_{ZY|X}\right)$$

$$\left(P_{ZX}^*, P_{Y|Z,X}^*\right) \xrightarrow{C^{-1}} P_{ZXY}^* \xrightarrow{A^{-1}} \left(P_{ZX}^*, \boxed{P_{Y|X}^*}, \boxed{\phi_{ZY|X}^*}\right)$$

Using
$$r(z, x; p) = p^*(z, x)/p(z, x)$$
, we get
$$p(z, x, y) = \frac{p^*(z, x, y)}{r(z, x)} = \frac{A(p^*(z, x), p^*(y \mid x), \phi^*(z, y \mid x))}{r(z, x; p)}$$

$$= \frac{A(p(z, x)r(z, x; p), p^*(y \mid x), \phi^*(z, y \mid x))}{r(z, x; p)}.$$

Example: Verma graph

Example: Verma graph

We choose
$$X = (A, B)$$
, $Z = L$ and $Y = Y$.

Example: Verma graph

We choose
$$X = (A, B)$$
, $Z = L$ and $Y = Y$.

With density ratio $r(a, l, b; p) = p(b)/p(b \mid a, l)$, we can parametrize

$$P(A, L, B, Y) \stackrel{A^{-1}}{\rightleftharpoons} \left(\boxed{P_{ALB}}, P_{Y|AB}, \phi_{YL|AB} \right)$$

$$P^*(A, L, B, Y) \stackrel{A^{-1}}{\rightleftharpoons} \left(P_{ALB}^*, \boxed{P_{Y|AB}^*}, \boxed{\phi_{YL|AB}^*} \right).$$

Example: Structural nested model

With r = 1, this is a more direct parametrization

$$\left(\overbrace{P_{ZX}}, P_{Y|Z,X} \right) \xrightarrow{C^{-1}} P_{ZXY} \xrightarrow{A^{-1}} \left(P_{ZX}, P_{Y|X}, \phi_{ZY|X} \right) \\
\downarrow r^{-1} \qquad \downarrow r \\
\left(P_{ZX}^*, \overbrace{P_{Y|Z,X}^*} \right) \xrightarrow{C^{-1}} P_{ZXY}^* \xrightarrow{A^{-1}} \left(P_{ZX}^*, P_{Y|X}^*, \phi_{ZY|X}^* \right)$$

For baseline covariates $Z = (Z_0, C)$, suppose that we want to study how C modified the effect of X on Y. \blacktriangleright i.e., interested in modeling $p(Y \mid C, do(X))$.

For baseline covariates $Z = (Z_0, C)$, suppose that we want to study how C modified the effect of X on Y. \blacktriangleright i.e., interested in modeling $p(Y \mid C, do(X))$.

 \blacksquare Yet, meanwhile, we want to control for the **confounding** induced by C (in addition to Z_0).

For baseline covariates $Z = (Z_0, C)$, suppose that we want to study how C modified the effect of X on Y. \blacktriangleright i.e., interested in modeling $p(Y \mid C, do(X))$.

- Yet, meanwhile, we want to control for the **confounding** induced by C (in addition to Z_0).
- Choosing density ratio $r(z_0, c, x, y; p) = p(x)/p(x \mid z_0, c)$, then we can look at

$$p^*(y \mid c, x) = p(y \mid c, do(x))$$

for effect modification.

For baseline covariates $Z = (Z_0, C)$, suppose that we want to study how C modified the effect of X on Y. \blacktriangleright i.e., interested in modeling $p(Y \mid C, do(X))$.

- Yet, meanwhile, we want to control for the **confounding** induced by C (in addition to Z_0).
- Choosing density ratio $r(z_0, c, x, y; p) = p(x)/p(x \mid z_0, c)$, then we can look at

$$p^*(y \mid c, x) = p(y \mid c, do(x))$$

for effect modification.

$$\begin{pmatrix}
P_{Z_0CX}, P_{Y|Z_0,C,X}
\end{pmatrix} \xrightarrow{C^{-1}} P_{Z_0CXY} \xrightarrow{A^{-1}} \begin{pmatrix}
P_{Z_0CX}
\end{pmatrix}, P_{Y|C,X}, \phi_{YZ_0|C,X}$$

$$\downarrow r^{-1} \downarrow r$$

$$\begin{pmatrix}
P_{Z_0CX}, P_{Y|Z_0,C,X}
\end{pmatrix} \xrightarrow{C^{-1}} P_{Z_0CXY}^* \xrightarrow{A^{-1}} \begin{pmatrix}
P_{Z_0CX}, P_{Y|C,X}
\end{pmatrix}, \phi_{YZ_0|C,X}^*$$

Cognate?

▶ The cognate definition essentially requires choosing

$$r(z, x; p) = \frac{w(z \mid x)}{p(z \mid x)}$$

for some kernel $w(z \mid x)$.

But formulating it in terms of density ratio is perhaps more general?

Congrats & Thanks