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Suppose we are interested in the counterfactual mean E Y'(a).

(Robins, 1986)
aka manipulated distribution formula (Spirtes, Glymour, and Scheines, 2000), trun-

cated factorization formula (Pearl, 2000)

EY(a)=V.(P;G)= > y S [[P(vIPa(v.G))

V\{A} v#a Az

V(PiG)= Y. yply|A=a0)p(i | wi)p(o| wi)

Y50,1, Wi, W, w3, Wy

x p(wi | wa, ws)p(ws | wa)p(w2)p(wa).

1= Due to the factorization of P, in the model, E Y(a) can be expressed
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Other identifying formulae

We have back-door formulae @ @ @

VAD(P;G) = E[E[Y | A= a,L]], (W)
where L can take @ @
{0}, {I,0}, {I,W1,0}, {I,0, Wy, Ws},.... @— ()

> Which formula should | use?
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Plugin estimates

We can compare the of plugin estimators of
formulae. (= Suppose all variables take only finitely many levels.)

5 g-formula is efficient (MLE):
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Another example
Lo

1. “back-door” (Pearl, 1993)
VIPPiG) = TELY | A= 0lp(o)

2. “front-door” (Pearl, 1995)
WERONT(P;Q) — Z {ZE[Y | m,A=2a'|p(A= a/)} p(m| A=a),

m

3. or the g-formula (Robins 1986)
o(P:9) = Z:IE[YIm olp(o)p(m [ A = a).
== Which one should be preferred? “Another area which is neglected in my

opinion ... given an estimand find the best way of decomposing to estimate it”
— Judea Pearl (OCIS, Nov 17, 2020).
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Semiparametric efficiency

The efficiency bound is defined with respect to

M(G,V) :={P(V) : P factorizes according to G}.

1z The efficiency bound for estimating E Y(a) at P (assuming positivity)
with respect to M(G, V) is characterized by the
Xefi,p(V; G).

1= Observation: for some graphs, certain variables from
Xeft.P(V; G).
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vector V. Suppose V' is a subvector of V, such that

1. W(P) depends on P only through margin P(V’)
2. and xefr,p(V; M) only depends on V through V' for every P € M(V),
then
Xefr,p(V; M) = xer,p(V'; M')  P-a.s. for every P € M,
where M" = {P(V’) : P(V) € M} is the induced marginal model over V'.

Given graph G over V, we say subset U C V is for
estimating E Y'(a) if

1. E Y(a) is identified from P(V \ U),
2. and xef,p(V; G) does not depend on U P-a.e. for all P € M(G,V).

V*(G) = {smallest V' : V\ V' is uninformative}.




1. . identify informative variables V*(G).
2. . characterize the marginal model over V*(G).
3. Derive a
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Taxonomy of vertices

We write u + v if uis an ancestor of v. (We always suppose A — Y.)

e N(G)={v:vAH Y}

= non-ancestors of Y

e I(G)={v#A:v— Y only through A}
5 conditional instruments

e WG)={v&l(G):Ahv,v— Y}
5 baseline covariates

e MG)={v:iA—v—Y}

5 mediators

1= A special subset of W plays an important role:
0(9) :=Pa(MU{Y})\ (De(MU{Y})U{A})

is the (Henckel, Perkovi¢, and Maathuis, 2022;
Rotnitzky and Smucler, 2020).
(O consists of direct parents of M or Y that do not block causal paths.)
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N and | are uninformative

Using conditional independences on G, Rotnitzky and Smucler (2020) showed
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13



N and | are uninformative

Using conditional independences on G, Rotnitzky and Smucler (2020) showed
J
Xertp(V,G) = > (E[6(O) | W;, Pa(W;)] — E[b(0) | Pa(W)])
j=1
K+1
+)  (E[AY/n(0) | My, Pa(Mi)] — E[AY /x(0) | Pa(My)]),

k=1

where Mk =Y, b(0O) =E[Y | A=1,0], 7(0) = P(A=1]0).

This implies that
N(G) = {non-ancestors of Y} and 1(G) = {indirect ancestors of Y}

are

13
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Using conditional independences on G, Rotnitzky and Smucler (2020) showed
J
Xertp(V,G) = > (E[6(O) | W;, Pa(W;)] — E[b(0) | Pa(W)])
j=1
K+1
+)  (E[AY/n(0) | My, Pa(Mi)] — E[AY /x(0) | Pa(My)]),

k=1

where Mk =Y, b(0O) =E[Y | A=1,0], 7(0) = P(A=1]0).

This implies that

N(G) = {non-ancestors of Y} and 1(G) = {indirect ancestors of Y}

are

= Yet, N(G) and I(G) are defined with respect to G rather than M(G, V).
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Causal Markov equivalence

Two DAGs G and G’ are if they define the same set
of models

G~G < M(G,V)=M(G V).

(Andersson, Madigan, and Perlman, 1997;
Verma and Pearl, 1991)

G~ G <= @G and G share the same and

(unshielded collider: a — o <— b with a and b non-adjacent.)

1 But Markov equivalence does not preserve the causal interpretation:

©) ©
@—® @—®
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Causal Markov equivalence

(with respect to the effect of A on Y):

GG = G~G and Y(P,G) = W(P,G) for all P € Mg.

= The causal Markov equivalence class is characterized by Guo and
Perkovi¢ (2021) (with MPDAGsS).

Ugr 2 g 1(G") UN(G') is uninformative.

It can be further shown that there exists C; ~ G such that

)= U 19). N@)= U NG

g'~g G'~g

= Vertices can be determined uninformative by moving the causal
Markov equivalence class (flipping edges).
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Not complete ...

l} @ Xefr,p(V, G) depends on W4 thought the terms

[ Wll\

I ‘ E{b,(O) W Wo Wa) + by(0) — B(bOHWT
O—®
g

due to O 1lLg Wh, W5 | Wi, where b,(O) = E[Y | A= a, O].

17



Not complete ...

l} @ Xefr,p(V, G) depends on W4 thought the terms

W)
I E{b (O WrWo Ws} + by(0) — E{bOHWT
@—©

g

due to O 1lLg Wh, W5 | Wi, where b,(O) = E[Y | A= a, O].

(= Wi cannot be detected this way!
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1= Then the EIF only depends on W; through the terms:
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—E[b(0) [ Pa(W,)]  —E[b(O) | Pa(W},)] —E[b(0) | Pa(Wj)]

To make this happen, we can posit the following graphical
L W 1g O | W, Pa(W;)\ {W},
2. andform=1,...,r:
(i) W,,_, = W, (children are chained)
(i) Pa(W,,) C Pa(W,, _,)u{W,, ,} (parent sets are decreasing)
(i) Pa(W;,_,)\ Pa(W,,) 1Lg O | Pa(W;,) (left-over piece is
separated from O)

applies to mediator M; € M.

= A similar graphical
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Complete graphical criteria

The set of informative variables is given by

V*(G)={A,Y}UO
U{W; € W\ O : W, fails the W-criterion}
U{M; € M : M; fails the M-criterion}.

Proof sketch:

1. A Y, O are informative.

2. W;/M; satisfies the W/M-criterion = W;/M; is uninformative
== by conditional independence.

3. W;/M; fails the W/M-criterion = W;/M; is informative

1= by constructing certain P € M(G, V) such that xer,p(V,G) depends
on W;/M;.
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Graph reduction

1= How do we represent the following of a DAG?

MG, V") ={P(V*): P e M(G,V)},

where V* = V*(G).

1 Marginal models of a DAG can be complicated.
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Latent projection

5 One popular approach is the (Verma and Pearl, 1991).
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/0 o
2. Whenever there is a path of the form W< e - ==

add W<—Q©

.
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Latent projection

5 One popular approach is the (Verma and Pearl, 1991).

Suppose G = (VU U, E) for observed V and latent U.
1. Whenever there is a path of the form @_)@”_) _)<"Zz>_)®
add W—© (if not already present).

/0 o
2. Whenever there is a path of the form W< e - ==

add W<—Q©

(W
Y
) = (01)

d@

1z Results in an ADMG (not always a DAG). Conceptually strange.
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Graph reduction algorithm

V*+— {A YI]UWUM
G* < G(V™) by projecting out N and | with latent projection
for v € V* do
if (v € W\ O and v satisfies the W-criterion) or (v € M and v satisfies
the M-criterion) then
V* V" {v}
G gL,
end if
end for

return G*
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The reduced graph G* is a DAG on vertices V* = V*(G) with the
following properties.

1. G does not depend on the order that vertices are visited in the
Algorithm.

2. M(G,V*) = M(G",V*). (= when uninformative vars are continuous)
(= based on mDAGs of Evans, 2016)

3. V,(P;G) =V, (P;G") for every P € M(G,V).
4. XefF,P(V7 g) = XefF.P(V*)(V*7 g*) P-a.e. for every Pe M(gw V)
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Simplest efficient g-formula

W,(P;G") is the irreducible “efficient” g-formula in the sense that

|Wo(Pr; GT) — Wa(Pr; G)| = op(nfl/z) as n — oo

under iid sampling of P € M(G, V) with a finite sample space.
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Simplest efficient g-formula

W,(P;G") is the irreducible “efficient” g-formula in the sense that

|wa(Pn; g*) - \Ua(]Pn; g)' = Op(nil/z) as n— oo
under iid sampling of P € M(G, V) with a finite sample space.

@

"Wy

N
[ 1
@—g>®
OWD

%

©)
@&—® x P(o | we, ws)P(w2) P(ws).
G-

Vo(PiG)= > ypy|A=a0)p(i| wi)p(o]| wi)

¥50,i,w1,wa, w3, wy

x p(wi | wa, ws)p(ws | wa)p(w2)p(wa).

V(PG )= Y yPly|A=a,0]

Y,0,W2, W3
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The g-formula

V,(P;G) = ZE[Y | m, o]lp(o)p(m | a) is efficient.
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Examples (i)

(0)
E—M—O

g=g"

The g-formula

g)= ZE[Y | m,o]p(o)p(m | a) is efficient.

= Neither the back-door

w(Pig) = ZE{Y | 3, 0lp(o)
nor the front-door

U CIIEDY {ZE[Y | m,alp(a )}P(m | a)

m
is efficient.
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Examples (ii.a)

E=M—) @—®

G g

V,(P;Gi)=> E[Y|A=a,0=0]P(o).

26



Examples (ii.b)

G

27



Examples (ii.b)

© e
9&”‘“

g2 g; = g2

V,(PiG3) =) E[Y|A=a,M]> P(M|O,a)P(0).
M o
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Examples (ii.c)

Lo

<)

%>
®
4

@—®

g3

V,(P:G5) =E[Y | A=a.
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Examples (iii)

V,(P;G") = > E[Y | M] Y P(Mi | O1,05,A=a)P(01)P(0,).

My 01,0,

29



Examples (iv)
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reduceDAG

Try simplifying your causal DAG with R package

reduceDAG .
available from
@ . ®
010 0 https://unbiased.co.in

library (dagitty)
library (reduceDAG)
g <- dagitty(’dag {

A [pos="0,2", exposure]
M [pos="1,1"]

Y [pos="2,2", outcomel]
0 [pos="1,0"]

A ->M ->Y

A -> Y

0 ->M

)

cat (gFormula(g))

# sum_{M,Y} Y P[Y | A=a,M] sum_{0} P(M | A=a,0) P(0)

<- reduceDAG(g, verbose=TRUE)

Uninformative variables {M} are eliminated.

Reduced g-formula:

sum_{0,Y} Y P[Y | A=a,0] P(0) 31
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Conclusion

We have studied estimating the counterfactual mean (or the average
treatment effect) of a point intervention given a causal DAG.
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Conclusion

We have studied estimating the counterfactual mean (or the average

treatment effect) of a point intervention given a causal DAG.

For some graphs, certain variables are uninformative for optimal
estimation in large samples.

We graphically characterized the set of irreducible informative
variables V*.

The marginal model over V* is represented by a DAG G*.
1z A polynomial time algorithm for constructing G*.

For optimal estimation, G* is all you need.
= G* prescribes the simplest g-formula that is efficient.
1= G* could inform data collection and estimation strategies.

R package reduceDAG.
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Thanks!

arXiv: 2202.11994
R package: reduceDAG
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W-criterion Suppose { W; }UCh(W;)NW is topologically sorted as { W), =
Wi, Wi, ..., W, }. Then W; € W\ O is uninformative if and only if

1 W, g O | W, Pa(W;)\ {W;},
2. and form=1,...,r:
(i) W,_, = W, (children are chained)
(i) Pa(W;,) C Pa(W,, ,)U{W,, .} (parent sets are decreasing)
(i) Pa(W;,_,)\ Pa(W,,) 1Lg O | Pa(W;,) (left-over piece is
separated from O)

M-criterion Suppose {M;}UCh(M;)NM is topologically sorted as {M;, =
M;, M M, }. Then M; € M is uninformative if and only if

FERRRER)

1. M; lg {A, Y} U Omin | M;, Pa(M,-k) \ {M,'},
2. and for I =1,... k:
(i) Mj_, — Mj;,  (children are chained)
(i) Pa(M;) C Pa(M;,_,) U{M;_,} (parent sets are decreasing)
(i) Pa(M;_,)\ Pa(M;) lLg {A, Y} U Onmin | Pa(M;)  (left-over piece
is separated from A, Y, Omin)




Mo(V) = {all laws over vector V}.

Fix a model M(V) C Myo(V) and a functional v(P) :
M(V) = R.
Functional x(P) : Mo(V) — R is an identifying formula for v(P) if x(P) =
~v(P) for every P € M(V).

Consider a semiparametric model M(V) C Mo(V)
and a regular functional v : M(V) — R. Let vp .4(V) be its efficient influence
function with respect to M(V).

An identifying formula x : Mo(V) — R for functional ~ is called efficient if
xp.np(V) = 7p o(V) P-almost-everywhere for every P € M(V).
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