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Univariate linear regression
Multiple linear regression

‘Linear regression’ and ‘linear model’ are used interchangeably.
☞ What is ‘regression’?

▶ Francis Galton (1822–1911), Darwin’s nephew, controversial guy
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Univariate linear regression
Multiple linear regression

Galton’s ‘regression to the mean’

Francis Galton’s example.

> GaltonFamilies

family father mother midparentHeight children childNum gender childHeight

1 001 78.5 67.0 75.43 4 1 male 73.2

2 001 78.5 67.0 75.43 4 2 female 69.2

3 001 78.5 67.0 75.43 4 3 female 69.0

4 001 78.5 67.0 75.43 4 4 female 69.0

5 002 75.5 66.5 73.66 4 1 male 73.5

6 002 75.5 66.5 73.66 4 2 male 72.5

7 002 75.5 66.5 73.66 4 3 female 65.5

8 002 75.5 66.5 73.66 4 4 female 65.5

9 003 75.0 64.0 72.06 2 1 male 71.0

10 003 75.0 64.0 72.06 2 2 female 68.0

...
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Univariate linear regression
Multiple linear regression

Galton’s ‘regression to the mean’

xi = midparentHeighti = (father+ 1.08 mother)/2

yi = childHeighti .

▶ Galton determines that the ‘best fitted line’ can be written as

y − ȳ

σ̂y
= ρ̂

x − x̄

σ̂x
,

where |ρ̂| < 1 — “regression to the mean / mediocre”.
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Univariate linear regression
Multiple linear regression

Galton’s ‘regression to the mean’
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Univariate linear regression
Multiple linear regression

Ordinary least squares (OLS)

The best fitted line y = α̂+ β̂x is defined to be

(α̂, β̂) = argmin
α,β

∑
i

(yi − α− βxi )
2.

▶ Gauss and Legendre

▶ Not
∑

i |yi − α− βxi |
Normal equations: ∑

i

yi − α̂− β̂xi = 0 =⇒ ȳ − α̂− β̂x̄ = 0∑
i

xi (yi − α̂− β̂xi ) = 0 =⇒ xy − α̂x̄ − β̂x2 = 0.

▶ goes through data center

Subtracting 1st eqn multiplied by x̄ , we get

(x2 − x̄2)β̂ = xy − x̄ ȳ
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Univariate linear regression
Multiple linear regression

Ordinary least squares (OLS) for univariate X

Univariate OLS

β̂ =
σ̂xy

σ̂2
x

=
ρ̂xy σ̂x σ̂y

σ̂2
x

=
ρ̂xy σ̂y

σ̂x
.

The fitted line is

y = α̂+ β̂x = (ȳ − β̂x̄) + β̂x

y − ȳ = β̂(x − x̄)

y − ȳ =
ρ̂xy σ̂y

σ̂x
(x − x̄)

y − ȳ

σ̂y
= ρ̂xy

x − x̄

σ̂x
.

▶ ρ̂xy = 0.32 < 1 — ‘regression to the mean’ by Galton, “the average regression of the offspring is a constant

fraction of their respective mid-parental deviations” ▶ Does it make sense?
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Univariate linear regression
Multiple linear regression

Without intercept

β̂ = argmin
b

∑
i

(yi − b xi )
2

From normal equation ∑
i

xi (yi − β̂xi ) = 0,

we get

β̂ =

∑
i xiyi∑
i x

2
i

=
⟨x , y⟩
⟨x , x⟩

.

▶ Will be used a lot later!
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Univariate linear regression
Multiple linear regression

Multiple linear regression

Multiple covariates

X =


x11 x12 . . . x1p
x21 x22 . . . x2p
...

...
...

xn1 xn2 . . . xnp

 =


x⊺1
x⊺2
...
x⊺n

 = (X1, . . . ,Xp)

▶ row xi , column Xj

and single outcome

Y =


y1
y2
...
yn

 .
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Univariate linear regression
Multiple linear regression

Jargon

Xj Y

Regressor Response
Covariate Outcome
Feature Label
Predictor

Explanatory variable
Independent variable Dependent variable
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Univariate linear regression
Multiple linear regression

OLS

Find the best fitted line
yi = β̂1xi1 + · · ·+ β̂pxi1 = x⊺i β̂

for

X =


x11 x12 . . . x1p
x21 x22 . . . x2p
...

...
...

xn1 xn2 . . . xnp

 , Y =


y1
y2
...
yn

 .

β̂ = argmin
b

n∑
i=1

(yi − b⊺xi )
2 = argmin

b
∥Y − Xb∥2.

Normal equation∑
i

(yi − x⊺i β̂)xi = 0 ⇐⇒ X⊺ (Y − X β̂) = 0 ⇐⇒ X⊺Y = X⊺X β̂.
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Univariate linear regression
Multiple linear regression

OLS

If X⊺X is invertible,

β̂ = (X⊺X )−1X⊺Y . ⇐⇒ β̂ =

(∑
i

xix
⊺
i

)−1(∑
i

yixi

)
.

X⊺X invertible requires that for any 0 ̸= a ∈ Rp,

a⊺(X⊺X )a = ∥Xa∥2 ̸= 0 ⇐⇒ Xa ̸= 0,

i.e., X = (X1, . . . ,Xp) are linearly independent.

☞ Throughout, we assume

Condition: Column vectors of X are linearly independent. ▶ Must have n ≥ p (why?)
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Recall

▶ Univariate OLS y = α+ βx :

y − ȳ = β̂(x − x̄), β̂ =
σ̂xy
σ̂2
x

.

▶ Univariate OLS y = βx :

β̂ =
⟨x , y⟩
⟨x , x⟩

.

▶ Multivariate OLS y = β⊺x :

X ⊺(Y − X β̂) = 0, β̂ = (X ⊺X )−1X ⊺Y .
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Vectors

For x , y ∈ Rn,

• ⟨x , y⟩ = x⊺y =
∑

i xiyi
• ∥x∥2 = ⟨x , x⟩
• Cauchy-Schwartz |⟨x , y⟩| ≤ ∥x∥∥y∥.

☞ ‘=’ holds iff ax = by for some scalar a, b.

• Triangle ∥x + y∥ ≤ ∥x∥+ ∥y∥ ▶ Follows from above

• Orthogonal x ⊥ y : x⊺y = 0

• ρ̂xy = cos∠(x − x̄ , y − ȳ) = ⟨x−x̄ ,y−ȳ⟩
∥x−x̄∥∥y−ȳ∥ ▶ when achieves ±1?
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Matrix, row space, column space

A = (aij)n×m =

a11 . . . a1m
...

...
an1 . . . anm

 =

a⊺1
...
a⊺n

 = (A1, . . . ,Am).

▶ Column space

C(A) = {α1A1 + . . . αmAm : α1, . . . , αm ∈ R} = {Aα : α ∈ Rm}.

▶ Row space

R(A) = {r1a1 + · · ·+ rnan : r1, . . . , rn ∈ R} = {A⊺r : r ∈ Rn}

▶ C(A) = R(A⊺)

4 / 23



Matrix as a linear map

A matrix A ∈ Rp×r is a linear map from Rr to Rp: x 7→ Ax for x ∈ Rr .

• Rotation by θ counterclockwise: A =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
• Reflection: A =

[
1 0
0 −1

]
and A =

[
−1 0
0 1

]
• Scale by 2 in all directions: A =

[
2 0
0 2

]
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Matrix multiplication, rank

▶ For A : n ×m, B : m × l ,

AB = A(B1, . . . ,Bl) = (AB1, . . . ,ABl) has columns in C(A).

☞ Right multiply: cols!

AB =

a⊺1
...
a⊺n

B =

a⊺1B
...

a⊺nB

 has rows in R(B) = C(BT ).

☞ Left multiply: rows!

▶ A set of vectors A1, . . . ,Am ∈ Rn are linearly independent if

α1A1 + · · ·+ αmAm = 0 ⇐⇒ α = 0.

rank(A) := rank(A1, . . . ,Am) := maximal # of linearly independent vectors

▶ rank(AB) ≤ min(rankA, rankB) (why?)
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Matrix multiplication, rank

▶ If A ∈ Rn×m has rank k , then we can write A = B︸︷︷︸
n×k

C︸︷︷︸
k×m

(why?)

☞ Take B to be k linearly independent cols of A...
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Orthogonal matrix

Definition A ∈ Rn×n is orthogonal if A has orthonormal columns, i.e.,

⟨Ai ,Aj⟩ =

{
1, i = j

0, i ̸= j
.

A is orthogonal ⇐⇒ A⊺A = In

⇐⇒ A has orthonormal rows

(why?)

(Need A be symmetric?)
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Inverse of a matrix

Definition For A ∈ Rn×n, A is invertible if there is B ∈ Rn×n such that

AB = In

and A−1 := B.

▶ If so, B−1 = A. (why?)

▶ (AB)−1 = B−1A−1.
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Eigendecomposition of a real, symmetric matrix

A ∈ Rn×n has eigenvalue λ with eigenvector x ∈ Rn if

Ax = λx , x ̸= 0.

▶ This must mean (A− λI ) has rank < n. (why?)

▶ Characteristic-poly(λ) := det(λI − A) = 0.

If A is symmetric, it must admit

(λ1, u1), (λ2, u2), . . . , (λn, un)

with Aui = λiui , λi ∈ R, ui ∈ Rn.

☞ Further, {ui} can be chosen such that they are orthonormal. (why?)
▶ For λi ̸= λj , ui ⊥ uj ; if λi = λj , orthogonalize.
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Eigendecomposition of a real, symmetric matrix

Let U = (u1, . . . , un), then

AU = U diag(λ1, . . . , λn),

so

A = U diag(λ1, . . . , λn)U
⊺ =

∑
i

λiuiu
⊺
i .

▶ rankA =
∑

i Iλi ̸=0

▶ A invertible ⇐⇒ λi ̸= 0, i = 1, . . . , n.
▶ If A is invertible, A−1 = U diag(λ−1

1 , . . . , λ−1
n )U⊺.

▶ Spectral function

Ak := A . . .A︸ ︷︷ ︸
k

= U diag(λk
1 , . . . , λ

k
n)U

⊺.

▶ TrA =
∑

i λi (why?)
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Quadratic form

A quadratic form in x ∈ Rn is ∑
ij

aijxixj = x⊺Ax ,

where WLOG we can assume A ∈ Rn×n is symmetric. (why?)

For a symmetric A,
▶ A ⪰ 0 (positive semidefinite): x⊺Ax ≥ 0 for every x
▶ A ≻ 0 (positive definite): x⊺Ax > 0 for every x ̸= 0

☞ {A : A ⪰ 0} is a cone: For a, a′ > 0, aA+ a′A′ ⪰ 0 if A,A′ ⪰ 0.

Theorem A is psd iff every λi (A) ≥ 0; A is pd iff every λi (A) > 0.

▶ Eigendecomposition A = U diag(λ1, . . . , λn)U
⊺

▶ For A ⪰ 0, define
A1/2 := U diag(

√
λ1, . . . ,

√
λn)U

⊺.
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Rayleigh quotient

Theorem Let λ1 ≥ · · · ≥ λn be the eigenvalues of a real, symmetric matrix A.

1 The optimization problem

max
x

x⊺Ax , s.t. ∥x∥ = 1

has maximum λ1, which is achieved by ±u1.

2 The optimization problem

max
x

x⊺Ax , s.t. ∥x∥ = 1, x ⊥ u1

has maximum λ2, which is achieved by ±u2.

3 ...
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Rayleigh quotient

For a real, symmetric matrix A ∈ Rn×n and any x ̸= 0,

λmin(A) ≤
x⊺Ax

x⊺x
≤ λmax(A).

☞ All the diagonal elements of A are bounded between λmin and λmax (why?)

14 / 23



Trace

Trace of a square matrix is the sum of diagonal elements.

1 Tr(AB) = Tr(BA) (why?)

☞ Useful for changing dimension, e.g., for vectors v1, v2 ∈ Rn,

⟨v1, v2⟩ = v⊺1 v2 = Tr(v⊺1 v2) = Tr(v2v
⊺
1 ) = Tr(v1v

⊺
2 )

2 For a real, symmetric matrix A, Tr(A) =
∑

i λi . (why?)
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Projection matrix (important!)

Definition Matrix H ∈ Rn×n is a projection matrix if it is (why?)

1 symmetric: H = H⊺

2 idempotent: H2 = H. i.e., HHx = Hx for any x ∈ Rn

Theorem For a projection matrix H,

1 its eigenvalues are either 0 or 1, (why?)

2

rank(H) = Tr(H)
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Singular Value Decomposition (SVD)

Any n ×m matrix X can be written as

X = UDV ⊺,

where

1 U : n × n, orthogonal

2 V : m ×m, orthogonal

3 D : n ×m, ‘diagonal’: Dii ≥ 0 for i ≤ min(m, n)
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Full and mini SVDs: Tall matrix

U: n × n, orthogonal: U⊺U = UU⊺ = In
Umini: n ×m with orthogonal columns: U⊺

miniUmini = Im but UminiU
⊺
mini ̸= In
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Full and mini SVDs: Wide matrix

V : m ×m, orthogonal: V ⊺V = VV ⊺ = Im
Vmini: n ×m with orthogonal columns: V ⊺

miniVmini = In but VminiV
⊺
mini ̸= Im
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Mini SVD: rank-r matrix
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Relation to eigendecomposition

Given SVD X = UDV ⊺,

XX ⊺ = UDV ⊺VDU⊺ = UD2U⊺

X ⊺X = VDU⊺UDV ⊺ = VD2V ⊺

• The left singular vectors U of X are eigenvectors of XX ⊺

• The right singular vectors V of X are eigenvectors of X ⊺X

• The eigenvalues of X ⊺X and XX ⊺ are squares of singular values of X

▶ When X is symmetric, SVD = eigendecomposition up to signs:

X = U diag(λ1, . . . , λn)U
⊺ = U diag(|λ1|, . . . , |λn|)V T ,

where Vi = sign(λi )Ui .
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Pseudoinverse

For n ×m matrix A with rank r , its SVD can be written as

A = U diag(d1, . . . , dr )V
⊺,

from which the pseudoinverse is defined to be the m × n matrix

A† := V diag(d−1
1 , . . . , d−1

r )U⊺

In terms of the full SVD

A = U

(
D∗ 0
0 0

)
V ⊺, D∗ = diag(d1, . . . , dr ) > 0,

we have

A† = V

(
D∗−1 0
0 0

)
U⊺,

i.e., inverting what can be inverted and leave zeros alone. ▶ When A is invertible,
A† = A−1.
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Vector calculus

For f : Rp → R,
∂f (x)/∂x = (∂f (x)/∂x1, . . . , ∂f (x)/∂xp)

⊺.

Hence,
∂a⊺x/∂x = a, ∂x⊺Ax/∂x = 2Ax .

▶ For f (x) = (f1(x), . . . , fq(x))
⊺ : Rp → Rq,

∂f (x)/∂x = (∂f1(x)/∂x , . . . , ∂fq(x)/∂x) ∈ Rp×q.

Hence, for x ∈ Rp and B ∈ Rq×p,

∂Bx

∂x
= B⊺.

▶ See Appendix A.2
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Recall: OLS with a single covariate

▶ Univariate OLS y = α+ βx :

y − ȳ = β̂(x − x̄), β̂ =
σ̂xy
σ̂2
x

(x − x̄) =
ρ̂xy σ̂y
σ̂x

(x − x̄).

▶ Univariate OLS y = βx :

β̂ =
⟨x , y⟩
⟨x , x⟩

.
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OLS

Find the best fitted line
yi = β̂1xi1 + · · ·+ β̂pxi1 = x⊺i β̂

for

X =


x11 x12 . . . x1p
x21 x22 . . . x2p
...

...
...

xn1 xn2 . . . xnp

 , Y =


y1
y2
...
yn

 .

β̂ = argmin
b

n∑
i=1

(yi − b⊺xi )
2 = argmin

b
∥Y − Xb∥2.

Normal equation (why?)∑
i

(yi − x⊺i β̂)xi = 0 ⇐⇒ X⊺ (Y − X β̂) = 0 ⇐⇒ X⊺Y = X⊺X β̂.
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OLS

If X⊺X is invertible,

β̂ = (X⊺X )−1X⊺Y . ⇐⇒ β̂ =

(∑
i

xix
⊺
i

)−1(∑
i

yixi

)
.

X⊺X invertible requires that for any 0 ̸= a ∈ Rp,

a⊺(X⊺X )a = ∥Xa∥2 ̸= 0 ⇐⇒ Xa ̸= 0,

i.e., X = (X1, . . . ,Xp) are linearly independent.

☞ In this course (unless stated otherwise), we assume

Condition Column vectors of X are linearly independent. =⇒ n ≥ p.

☞ Fill X with iid normal draws (random design). Then the above is satisfied with prob. 1. (why?)
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Geometry

Because C(X ) = {Xb : b ∈ Rp}, the least squares finds

min ∥Y − Xb∥2 ⇐⇒ min
Ŷ∈C(X )

∥Y − Ŷ ∥2,

where Ŷ = X β̂ = X (X⊺X )−1X⊺Y is the vector of fitted values.
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Geometry

Orthogonal projection Projection matrix / Hat matrix H = X (X⊺X )−1X⊺ .

Y = HY + (I − H)Y = Ŷ + ε̂,

where the residual vector ε̂ = Y − Ŷ satisfies

X⊺ε̂ =

X⊺
1 ε̂
...

X⊺
p ε̂

 = 0

⇐⇒ X⊺(Y − X β̂) = 0. normal equation

▶ Implications

1 ε̂ ⊥ v for any v ∈ C(X ) ⇐⇒ 0 = ⟨Xb, ε̂⟩ = b⊺X⊺ε̂ for any b ∈ Rp.

2 If X contains a column of 1’s (intercept), then 1⊺ε̂ = 0.
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Geometry

▶ Pythagorean Theorem

∥Y ∥2 = ∥Ŷ ∥2 + ∥ε̂∥2

▶ OLS is the best fitted line

For any b ∈ Rn, (why?)

∥Y − Xb∥2 = ∥Y − X β̂∥2 + ∥X (β̂ − b)∥2

and hence
∥Y − Xb∥2 ≥ ∥Y − X β̂∥2,

with equality iff b = β̂.
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Projection matrix H

In HW, we have verified that H = X (X⊺X )−1X⊺ is symmetric and idempotent — indeed, a
projection matrix.

▶ We know (What are the eigenvalues?)

Tr(H) = rank(H) = p.

Theorem H = X (X⊺X )−1X⊺ satisfies

1 Hv = v ⇐⇒ v ∈ C(X ) (why?)

2 Hw = 0 ⇐⇒ w ⊥ C(X ) (why?)

☞ If X contains a column of 1’s, then

H1n = 1n =⇒ Every row of H sums to 1
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Examples

▶ Example m treated, n controls

X =

(
1m 1m
1n 0n

)
.

H =

(
m−11m1

⊺
m 0

0 n−11n1
⊺
n

)

▶ Example J treatment levels, level j has nj units

X = diag(1n1 , . . . , 1nJ )

(What is H?)
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Recall: OLS

▶ H = X (X ⊺X )−1X ⊺ is the projection onto C(X ).

▶ Orthogonal decomposition

Y = Ŷ︸︷︷︸
HY

+ ε̂︸︷︷︸
(In−H)Y

, ∥Y ∥2 = ∥Ŷ ∥+ ∥ε̂∥2.

▶ To make sure that X ⊺X is invertible, we shall assume throughout
(☞ Or equivalently, to make sure that Ŷ = X β̂ for a uniquely defined β̂)

Assumption X ∈ Rn×p has linearly independent columns.
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Gauss–Markov model

GM The data generating process obeys

Y = Xβ + ε,

where

1 X is fixed and has linearly independent columns,

2 E ε = 0, cov ε = σ2In.

The unknown parameters are (β, σ2).

• No distributional nor independence assumption on ε — only the first two
moments of the random vector are concerned.

• X fixed not essential — if random, we can condition on X . (why?)
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Mean and covariance of OLS

▶ Under GM, the OLS satisfies

E β̂ = β, cov β̂ = σ2(X ⊺X )−1.

▶ What if X is not fixed?

4 / 9



Mean and covariance of (Ŷ , ε̂)

▶ Recall that H (onto C(X )) and In − H (onto C(X )⊥) are both projection matrices satisfying

HX = X , (I − H)X = 0, H(In − H) = (In − H)H = 0.

With (
Ŷ
ε̂

)
=

(
H

In − H

)
Y =

(
H

In − H

)
(Xβ + ε),

under GM we have

E
(
Ŷ
ε̂

)
=

(
Xβ
0

)
,

cov

(
Ŷ
ε̂

)
= σ2

(
H 0
0 In − H

)
.

☞ For any i , j ,

cov(Ŷi , Ŷj) = σ2hij , cov(ε̂i , ε̂j) = σ2(I{i = j} − hij), cov(Yi , ε̂j) = 0.
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Estimating σ2

It is natural to estimate σ2 based on the residual sum of squares

RSS :=
n∑

i=1

ε̂2i

We have

ERSS = E
n∑

i=1

ε̂2i = σ2
∑
i

(1− hii ) = σ2(n − Tr(H)) = σ2(n − p) (why?)

Theorem σ̂2 := RSS/(n − p) is an unbiased estimator of σ2 under GM.
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Gauss–Markov theorem

▶ Question unanswered so far — why should we focus on OLS?
▶ The next theorem establishes that OLS β̂ is the Best Linear Unbiased Estimator (BLUE) for
β under GM.

☞ Recall that ‘⪰’ is positive semidefinite order. For real, symmetric A,B,

A ⪰ B ⇐⇒ A− B ⪰ 0 ⇐⇒ c⊺(A− B)c ≥ 0 for every c .

▶ Natural notion for comparing covariances.

Gauss–Markov Theorem. Under GM, let β̃ be any linear, unbiased estimator of β in the
sense that

1 β̃ = AY for some A ∈ Rp×n that does not depend on Y , (linear in what?)

2 E β̃ = β for every β.

Then the OLS β̂ satisfies
cov β̃ ⪰ cov β̂.

▶ =⇒ var β̃j ≥ var β̂j (why?)
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Proof.

1 OLS is linear,

2 unbiased.

3 Covariance comparison.
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BLUE, necessarily good?

1 OLS is BLUE under GM, which is a restrictive model. In particular, it assumes
homoskedasticity var ε2i ≡ σ2. ▶ homo-skedastikos (Greek, disperse)

Under heteroskedasticity cov(ε) = Σ, it makes more sense to weigh observations
inverse proportionally to Σ:

Generalized least squares (GLS): β̂Σ = (X ⊺Σ−1X )−1X ⊺Σ−1Y .

▶ GLS is also linear and unbiased. (why?)

2 Unbiased estimator is important in classic statistics (e.g., U-stat).
In terms of estimation error, it can be worse than a biased estimator when p is
large.

9 / 9
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Gauss–Markov–Normal model
Pivotal inference

Recall: Gauss–Markov model

GM The data generating process obeys

Y = Xβ + ε,

where

1 X is fixed and has linearly independent columns,

2 E ε = 0, cov ε = σ2In.

The unknown parameters are (β, σ2).

Theorem Under GM, OLS is BLUE.
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Gauss–Markov–Normal model
Pivotal inference

Gauss–Markov–Normal model

GM-N The data generating process obeys

Y = Xβ + ε,

where

1 X is fixed and has linearly independent columns,

2 ε ∼ N (0, σ2In).

The unknown parameters are (β, σ2).

☞ Or equivalently,

Y ∼ N (Xβ, σ2In).

▶ GM-N implies GM
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Gauss–Markov–Normal model
Pivotal inference

Distributions, finite sample

Under GM-N , (
β̂
ε̂

)
∼ N

((
β
0

)
, σ2

(
(X ⊺X )−1 0

0 In − H

))
,

and with σ̂2 = ∥ε̂∥2/(n − p),

σ̂2/σ2 ∼ χ2
n−p/(n − p).

It holds that
β̂ ⊥⊥ ε̂, β̂ ⊥⊥ σ̂2

▶ σ̂2 is unbiased (why?)
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Gauss–Markov–Normal model
Pivotal inference

Distributions, finite sample

Under GM-N , (
Ŷ
ε̂

)
∼ N

((
Xβ
0

)
, σ2

(
H 0
0 In − H

))
.

▶ ε̂’s distribution is degenerate. (why?)
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Gauss–Markov–Normal model
Pivotal inference

Inference for scalar c⊺β

▶ Pivot: A real-valued quantity f (statistic, unknown) (called a ‘root’) whose
distribution is known — a bridge for inference.

c⊺β̂ ∼ N (c⊺β, σ2c⊺(X ⊺X )−1c)

Pivot for c⊺β. Under GM-N ,

Tc :=
c⊺β̂ − c⊺β√
σ̂2c⊺(X ⊺X )−1c

∼ tn−p.

Finite-sample CI can be constructed from

P{|Tc | ≤ t1−α/2,n−p} = 1− α.
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Gauss–Markov–Normal model
Pivotal inference

Quadratic forms of MVN

Theorem B.10

1 If Y ∼ N (µ,Σ),

(Y − µ)⊺Σ†(Y − µ) ∼ χ2
k , k = rank(Σ)

2 If Y ∼ N (0, In) and H is a projection matrix of rank k , then

Y ⊺HY ∼ χ2
k .

3 If Y ∼ N (0,H) and H is a projection matrix of rank k , then

Y ⊺Y ∼ χ2
k .
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Gauss–Markov–Normal model
Pivotal inference

Inference for vector Cβ

▶ For C : l × p, consider inferring Cβ ∈ Rp.

C (β̂ − β) ∼ N (0, σ2C (X ⊺X )−1C⊺)

☞

(C β̂ − Cβ)⊺
{
σ2C (X ⊺X )−1C⊺}−1

(C β̂ − Cβ) ∼ χ2
l ,

if we assume C has linearly independent rows. (why?)

Pivot for Cβ. Suppose C ∈ Rl×p has linearly independent rows. Under GM-N ,

FC :=
(C β̂ − Cβ)⊺

{
C (X ⊺X )−1C⊺

}−1
(C β̂ − Cβ)

l σ̂2
∼ Fl ,n−p.

8 / 12



Gauss–Markov–Normal model
Pivotal inference

Quadratic forms of random vectors

Theorem B.8 If a random vector Y has mean µ and covariance Σ, then

EY ⊺AY = Tr(AΣ) + µ⊺Aµ.
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Gauss–Markov–Normal model
Pivotal inference

Related distributions

Ga(k/2, 1/2) =d χ2
k = N(0, 1)2 + · · ·+ N(0, 1)2︸ ︷︷ ︸

k times

tk =
N(0, 1)√
χ2
k/k

Fk,l =
χ2
k/k

χ2
l /l

,

so t2l = F1,l

with appropriate independence between relevant random variables.
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Gauss–Markov–Normal model
Pivotal inference

Prediction

Want to get a prediction interval on a new observation

yn+1 = x⊺n+1β + εn+1, εn+1 ∼ N (0, σ2).

Theorem Under GM-N , we have the following pivot for prediction:

yn+1 − x⊺n+1β̂√
σ̂2 + σ̂2x⊺n+1(X

⊺X )−1xn+1

∼ tn−p.
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Gauss–Markov–Normal model
Pivotal inference
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OLS under Heteroskedasticity

Recall: finite-sample inference under Normal linear model

GM-N The data generating process obeys

Y = Xβ + ε,

where

1 X is fixed and has linearly independent columns,

2 ε ∼ N (0, σ2In). i.e., εi
iid∼ N (0, σ2)

The unknown parameters are (β, σ2).

▶ β̂ − β ∼ N (0, σ2(X ⊺X )−1) ⊥⊥ σ̂2/σ2 ∼ χ2
n−p/(n − p).

▶ Constructing t or F pivots

▶ Efficiency: OLS β̂ is MLE and BLUE
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OLS under Heteroskedasticity

Heteroskedastic linear model

Hetero The data generating process obeys

Y = Xβ + ε, ε = (ε1, . . . , εn)
⊺,

where

1 X is fixed and has linearly independent columns,

2 εi ’s are independent with E εi = 0, var εi = σ2
i

The unknown parameters are (β, σ2
1, . . . , σ

2
n).

☞ The errors might not be normal (though still cannot be arbitrary). (why?)
☞ Compared to GM, the errors are independent (though not iid).
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OLS under Heteroskedasticity

Heteroskedastic linear model: a simulation

ŜER ŜEhccm

Homoskedastic
normal
exp

Heteroskedastic
normal
unif

R/HuberWhite.R
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OLS under Heteroskedasticity

Heteroskedastic linear model: a simulation

ŜER ŜEhccm

Homoskedastic
normal ✓ ✓

exp ✓ ✓

Heteroskedastic
normal ✗ ✓

unif ✗ ✓

R/HuberWhite.R
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OLS under Heteroskedasticity

OLS: asymptotic expansion

Hetero The data generating process obeys Y = Xβ + ε, ε = (ε1, . . . , εn)
⊺, where

1 X is fixed and has linearly independent columns,

2 εi ’s are independent with E εi = 0, var εi = σ2
i

The unknown parameters are (β, σ2
1 , . . . , σ

2
n).

Lemma Under Hetero, we have β̂ − β = B−1
n ξn with

Bn = n−1
n∑

i=1

xix
⊺
i , ξn = n−1

n∑
i=1

xiεi

☞ E β̂ = β (why?)

☞ When n is large, β̂ − β ≈ B−1ξn = B−1 (n−1
∑
i

xiεi )︸ ︷︷ ︸
avg of ind terms

.
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OLS under Heteroskedasticity

OLS: consistency

Assumption 1. We have

Bn := n−1
n∑

i=1

xix
⊺
i → B, Mn := n−1

n∑
i=1

σ2
i xix

⊺
i → M,

where B is invertible.

Theorem Under Hetero and Assumption 1, β̂ is consistent for β.
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OLS under Heteroskedasticity

OLS: asymptotic normality

Assumption 1 (good limits). Bn → B, Mn → M, where B is invertible.

Assumption 2 (moment condition). For some δ > 0 and C > 0, it holds that

d2+δ,n := n−1
n∑

i=1

∥xi∥2+δ E |εi |2+δ < C for all n.

Theorem Consider Hetero model. Under Assumption 1 and 2, we have

√
n(β̂ − β) →d N (0,B−1MB−1).

▶ Approximately,
β̂ − β

a∼ N (0, n−1B−1MB−1),

where n−1B−1MB−1 is the standard error of β̂.
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OLS under Heteroskedasticity

Lindeberg-Feller CLT

▶ Triangular array (Zn,1, . . . ,Zn,kn ) with kn → ∞ as n → ∞, e.g.,

Z1,1

Z2,1 Z2,2

Z3,1 Z3,2 · · · Z3,3

...
. . .

Theorem For each n, let Zn,1, . . . ,Zn,kn be independent random variables with finite variances
such that

(LF-1)
∑kn

i=1 E
[
∥Zn,i∥2 I{∥Zn,i∥ > c}

]
→ 0 for every c > 0,

(LF-2)
∑kn

i=1 covZn,i → Σ.

Then,
∑kn

i=1(Zn,i − EZn,i ) →d N (0,Σ). The result still holds if (LF-1) is replaced by

(LF-1’)
kn∑
i=1

E ∥Zn,i∥2+δ → 0 for some δ > 0.

☞ See also Theorem 2.2 in Shorack (2017), Probability for Statisticians. 9 / 9
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Eicker–Huber–White

Recall: ASN under heteroskedastic errors

Hetero The data generating process obeys Y = Xβ + ε, ε = (ε1, . . . , εn)
⊺, where

1 X is fixed and has linearly independent columns,

2 εi ’s are independent with E εi = 0, var εi = σ2
i

The unknown parameters are (β, σ2
1 , . . . , σ

2
n). ☞ Is OLS still BLUE? (why?)

Theorem Consider Hetero model. Under

(A1) (good limits) Bn := n−1
n∑

i=1

xix
⊺
i → B (full rank), Mn := n−1

n∑
i=1

σ2
i xix

⊺
i → M

(A2) (moment condition) d2+δ,n := n−1
n∑

i=1

∥xi∥2+δ E |εi |2+δ < C for δ > 0, C > 0,

√
n(β̂ − β) →d N (0,B−1MB−1).
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Eicker–Huber–White

Estimating asymptotic covariance

The asymptotic covariance

Σ = B−1MB−1.

▶ B is the limit of Bn and can be naturally estimated by Bn = n−1X ⊺X .

▶ For M = n−1
∑

i σ
2
i xix

⊺
i = n−1X ⊺ diag(σ2

1, . . . , σ
2
n)X , an ideal (but infeasible)

estimator is
M̃n := n−1

∑
i

ε2i xix
⊺
i .

▶ unbiased (why?)

▶ Replace it with

M̂n := n−1
∑
i

ε̂2i xix
⊺
i .

▶ Recall: ε̂ = (I − H)Y

▶ To show its consistency, suffices to show M̃n → M and M̂n − M̃n →p 0. (why?)
3 / 9



Eicker–Huber–White

Consistency of M̂n

Theorem Consider Hetero model. Suppose it holds that

(A1) (good limits) Bn := n−1
n∑

i=1

xix
⊺
i → B (full rank), Mn := n−1

n∑
i=1

σ2
i xix

⊺
i → M.

We have M̂n →p M if the following (A3) (extra moment condition) holds:

n−1
∑
i

var(ε2i )x
2
i,j1x

2
i,j2 , n−1

∑
i

|xi,j1xi,j2xi,j3xi,j4 |, n−2
∑
i

σ2
i x

2
i,j1x

2
i,j2x

2
i,j3

are bounded above by some constant C for all n and every j1, j2, j3, j4 ∈ {1, . . . , p}.

☞ Then,

Σ̂EHW := B−1
n M̂nB

−1
n →p Σ = B−1MB−1.
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Eicker–Huber–White

Consistency of M̂n

Proof.
M̂n −M = M̃n −M + M̂n − M̃n

1 M̃n →p M.

2 M̂n − M̃n →p 0.

5 / 9



Eicker–Huber–White

Eicker–Huber–White

▶ Consistent estimator of asymptotic covariance

Σ̂EHW =


Bn︷ ︸︸ ︷

n−1
∑
i

xix
⊺
i


−1 

M̂n︷ ︸︸ ︷
n−1

∑
i

ε̂2i xix
⊺
i




Bn︷ ︸︸ ︷
n−1

∑
i

xix
⊺
i


−1

= n (X⊺X )−1(X⊺Ω̂X )(X⊺X )−1︸ ︷︷ ︸
V̂EHW

, Ω̂ = diag(ε̂21, . . . , ε̂
2
n).

▶ Convergence in distribution: Σ̂
−1/2
EHW

√
n(β̂ − β) →d N (0, Ip). (why?)

▶ Approximately,
β̂

a∼ N (β, V̂EHW).

☞ V̂EHW yields robust/sandwich or HC (heteroskedasticity-consistent) standard errors:

ŜEEHW(βj) =

√
(V̂EHW)j,j , j = 1, . . . , p.
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Eicker–Huber–White

Eicker–Huber–White: HC variants

Σ̂EHW,k/n = V̂EHW,k = (X⊺X )−1
(
X⊺ diag(ε̂21,k , . . . , ε̂

2
n,k)X

)
(X⊺X )−1,

with

ε̂i,k =



ε̂i , HC0 ▶ vanilla

ε̂i
√

n/(n − p), HC1 ▶ d.o.f. correction

ε̂i/
√
1− hii , HC2 ▶ unbiased under homoskedasticity

ε̂i/(1− hii ), HC3 ▶ jackknife

ε̂i/(1− hii )
min{2,nhii/(2p)}, HC4

☞ For practice, maybe consider HC2 or HC3.
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Eicker–Huber–White

Special case: homoskedastic

▶ When σ2
1 = · · · = σ2

n = σ2,
√
n(β̂ − β) →d N (0,B−1MB−1) = N (0, σ2B−1)

(why?)

Theorem Consider Hetero model. Suppose it holds that

(A1) (good limits) Bn := n−1
n∑

i=1

xix
⊺
i → B (full rank), Mn := n−1

n∑
i=1

σ2
i xix

⊺
i → M.

Further, if
σ2
1 = · · · = σ2

n = σ2 and n−1
∑
i

var(ε2i ) is bounded,

then
σ̂2 := RSS/(n − p) →p σ2.

▶ We already know that σ̂2 is unbiased. (why?)
8 / 9



Eicker–Huber–White

Review: models

GM We have Y = Xβ + ε with

1 X is fixed and has linearly independent columns,

2 E ε = 0, cov ε = σ2In.

The unknown parameters are (β, σ2). ▶ Errors need not be independent.

GM-N We have Y = Xβ + ε with

1 X is fixed and has linearly independent columns,

2 ε ∼ N (0, σ2In).

The unknown parameters are (β, σ2). ▶ Errors are iid.

Hetero We have Y = Xβ + ε, ε = (ε1, . . . , εn)⊺, where

1 X is fixed and has linearly independent columns,

2 εi ’s are independent with E εi = 0, var εi = σ2
i

The unknown parameters are (β, σ2
1 , . . . , σ

2
n). ▶ Errors are independent.
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Recall: ASN under heteroskedastic errors

Hetero The data generating process obeys Y = Xβ + ε, ε = (ε1, . . . , εn)
⊺, where

1 X is fixed and has linearly independent columns,

2 εi ’s are independent with E εi = 0, var εi = σ2
i

The unknown parameters are (β, σ2
1 , . . . , σ

2
n). ☞ Is OLS still BLUE? (why?)

Theorem Consider Hetero model. Under

(A1) (good limits) Bn := n−1
n∑

i=1

xix
⊺
i → B (full rank), Mn := n−1

n∑
i=1

σ2
i xix

⊺
i → M

(A2) (moment condition) d2+δ,n := n−1
n∑

i=1

∥xi∥2+δ E |εi |2+δ < C for δ > 0, C > 0,

√
n(β̂ − β) →d N (0,B−1MB−1).
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Recall: Consistency of Σ̂EHW

Σ̂EHW = B−1
n M̂nB

−1
n

=

(
n−1

∑
i

xix
⊺
i

)−1(
n−1

∑
i

ε̂2i xix
⊺
i

)(
n−1

∑
i

xix
⊺
i

)−1

= n (X ⊺X )−1(X ⊺Ω̂X )(X ⊺X )−1︸ ︷︷ ︸
V̂EHW

, Ω̂ = diag(ε̂21, . . . , ε̂
2
n).

We have Σ̂EHW →p Σ = B−1MB−1 under (A1) (good limits) and (A3) (extra moment
conditions):

n−1
∑
i

var(ε2i )x
2
i ,j1x

2
i ,j2 ≤ C , n−1

∑
i

|xi ,j1xi ,j2xi ,j3xi ,j4 | ≤ C , n−2
∑
i

σ2
i x

2
i ,j1x

2
i ,j2x

2
i ,j3 ≤ C .
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Long and short regressions

Suppose X : n × (k + l) has linearly independent columns. Partition X and β into

X = ( X1︸︷︷︸
n×k

, X2︸︷︷︸
n×l

), β =

(
β1
β2

)
.

Long regression Y ∼ X1 + X2

Y = X β̂ + ε̂

= X1β̂1 + X2β̂2 + ε̂.

Short regression Y ∼ X2

Y = X2β̃2 + ε̃.

4 / 12



FWL theorem

Short regression Y = X2︸︷︷︸
n×l

β̃2 + ε̃:

β̃2 = (X ⊺
2X2)

−1X ⊺
2Y .

Long regression Y = X1︸︷︷︸
n×k

β̂1 + X2︸︷︷︸
n×l

β̂2 + ε̂

Frisch–Waugh–Lovell Theorem Suppose X has linearly independent columns. In the
long regression, the OLS for β2 has the following equivalent forms:

β̂2 = [(X ⊺X )−1X ⊺Y ](k+1):(k+l)

= {X ⊺
2 (In − H1)X2}−1X ⊺

2 (In − H1)Y , where H1 = X1(X
⊺
1X1)

−1X ⊺
1

= (X̃ ⊺
2 X̃2)

−1X̃ ⊺
2Y , where X̃2 = (In − H1)X2

= (X̃ ⊺
2 X̃2)

−1X̃ ⊺
2 Ỹ , where Ỹ = (In − H1)Y .
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FWL theorem

Frisch–Waugh–Lovell Theorem Suppose X has linearly independent columns. In the
long regression, the OLS for β2 has the following equivalent forms:

β̂2 = [(X ⊺X )−1X ⊺Y ](k+1):(k+l)

= {X ⊺
2 (In − H1)X2}−1X ⊺

2 (In − H1)Y , where H1 = X1(X
⊺
1X1)

−1X ⊺
1

= (X̃ ⊺
2 X̃2)

−1X̃ ⊺
2Y , where X̃2 = (In − H1)X2

= (X̃ ⊺
2 X̃2)

−1X̃ ⊺
2 Ỹ , where Ỹ = (In − H1)Y .

▶ X̃2 is the residual matrix from columnwise OLS fit of X2 on X1.
▶ Ỹ is the residual from OLS fit of Y on X2.
▶ β̂2 is the OLS from Ỹ ∼ X̃2 (partial regression)
▶ β̂2 is also the OLS from Y ∼ X̃2 (no need to residualize Y ).

☞ That is, short regression but with X2 replaced by X̃2
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Proof I: using inverse of 2× 2 block matrix

Recall from HW 3,(
A B
C D

)−1

=

(
A−1 + A−1BD̃−1CA−1 −A−1BD̃−1

−D̃−1CA−1 D̃−1

)
,

where D̃ = D − CA−1B is the Schur complement of A.

Lemma We have

(X⊺X )−1 =

(
S11 S12
S21 S22

)
,

where

S11 = (X⊺
1 X1)

−1 + (X⊺
1 X1)

−1X⊺
1 X2(X̃

⊺
2 X̃2)

−1X⊺
2 X1(X

⊺
1 X1)

−1,

S12 = −(X⊺
1 X1)

−1X⊺
1 X2(X̃

⊺
2 X̃2)

−1,

S21 = S⊺
12,

S22 = (X̃⊺
2 X̃2)

−1.
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Proof II: using orthogonality
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Properties

Lemma Let
H̃2 := X̃2(X̃

⊺
2 X̃2)

−1X̃ ⊺
2 .

We have
H1H̃2 = H̃2H1 = 0, H = H1 + H̃2.

☞ H ̸= H1 + H2 in general!

Corollary Long regression Y ∼ X and the partial regression Ỹ ∼ X̃2 have the same
residuals.

Corollary (under orthogonality) When X ⊺
1X2 = 0, i.e., C(X1) ⊥ C(X2), we have

X̃2 = X2,

β̂2 from Y ∼ X1 + X2 = β̃2 from Y ∼ X2.
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Gram–Schmidt

▶ Projection of V2 ∈ Rn on V1 ∈ Rn:

β̂V2|V1
V1 = V1(V

⊺
1 V1)

−1V ⊺
1︸ ︷︷ ︸

HV1

V2

Gram–Schmidt orthogonalization: Sequentially orthogonalize X = (X1, . . . ,Xp) to
orthogonal vectors (U1, . . . ,Up) such that C(U1, . . . ,Um) = C(X1, . . . ,Xm) for m = 1, . . . , p.

1 X1 = U1

2 X2 = β̂X2|U1
U1 + U2 U2 ⊥ U1 (why?)

3 X3 = β̂X3|U1
U1 + β̂X3|U2

U2 + U3 (why?)
... C(X1,X2,X3) = C(U1,U2,U3) (why?)

▶ Xp =
∑p−1

j=1 β̂p|Uj
Uj + Up.
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QR decomposition

Normalization
Qj = Uj/∥Uj∥, j = 1, . . . , p.

QR decomposition

X = (X1, . . . ,Xp)

= (U1, . . . ,Up)


1 β̂X2|U1

β̂X3|U1
. . . β̂Xp|U1

0 1 β̂X3|U2
. . . β̂Xp|U2

...
...

... . . .
...

0 0 0 . . . 1



= Q diag(∥U1∥, . . . , ∥Up∥)


1 β̂X2|U1

β̂X3|U1
. . . β̂Xp|U1

0 1 β̂X3|U2
. . . β̂Xp|U2

...
...

... . . .
...

0 0 0 . . . 1


= Q R.
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Solving OLS

▶ Instead of inverting X⊺X (numerically unstable), R solves OLS using X = QR:

X⊺X β̂ = X⊺Y

R⊺Q⊺QRβ̂ = R⊺Q⊺Y

R⊺Rβ̂ = R⊺Q⊺Y

Rβ̂ = Q⊺Y ,

then backsolves β̂.
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Applications of FWL
Midterm review

Recall: FWL theorem

Short regression Y = X2︸︷︷︸
n×l

β̃2 + ε̃

Long regression Y = X1︸︷︷︸
n×k

β̂1 + X2︸︷︷︸
n×l

β̂2 + ε̂

Frisch–Waugh–Lovell Theorem Suppose X has linearly independent columns. In the
long regression, the OLS for β2 has the following equivalent forms:

β̂2 = [(X ⊺X )−1X ⊺Y ](k+1):(k+l)

= {X ⊺
2 (In − H1)X2}−1X ⊺

2 (In − H1)Y , where H1 = X1(X
⊺
1X1)

−1X ⊺
1

= (X̃ ⊺
2 X̃2)

−1X̃ ⊺
2Y , where X̃2 = (In − H1)X2

= (X̃ ⊺
2 X̃2)

−1X̃ ⊺
2 Ỹ , where Ỹ = (In − H1)Y .
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Applications of FWL
Midterm review

Application of FWL: intercept and centering

▶ Coefficients in Y ∼ 1 + X can be obtained from Y ∼ (In − H1)X , where

H1 = 1n(1
⊺
n1n)

−11n = n−11n1n =

n−1 . . . n−1

... · · ·
...

n−1 . . . n−1

 .

▶ H1y =

ȳ
...
ȳ

.

▶ (In − H1)y =

y1 − ȳ
...

yn − ȳ

. ☞ Centering

▶ So what is (In − H1)X?
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Applications of FWL
Midterm review

Application of FWL: intercept and centering

▶ y⊺(In − H1)y = [(In − H1)y ]
⊺ (In − H1)y =

∑
i (yi − ȳ)2 = (n − 1)σ̂2

y .

▶ For X : n × p,

X ⊺(In − H1)X = (n − 1)

σ̂2
11 . . . σ̂2

1p
... . . .

...
σ̂2
p1 . . . σ̂2

pp

 .

☞ X ⊺(In − H1)X/(n − 1) is the sample covariance.

▶ Why divide by n − 1?

4 / 18



Applications of FWL
Midterm review

Simpson’s paradox: correlation and partial correlation

▶ (Marginal) correlation between x ∈ Rn and y ∈ Rn:

ρ̂xy =
⟨x − x̄ , y − ȳ⟩
∥x − x̄∥ ∥y − ȳ∥

=

∑
i (xi − x̄)(yi − ȳ)√∑

i (xi − x̄)2
√∑

i (yi − ȳ)2
.

▶ ρ̂xy ∈ [−1, 1] (why?)

▶ Partial correlation between x and y given W ∈ Rn×p:

ρ̂xy |W := ρ̂ε̂x|W ,ε̂y|W ,

where ε̂x |W , ε̂y |W are respectively residuals from x ∼ 1 +W and y ∼ 1 +W .
☞ This is the correlation between x and y while controlling for W , or after partialling out W .

5 / 18



Applications of FWL
Midterm review

Simpson’s paradox: correlation and partial correlation

▶ Simpson’s paradox: ρ̂xy and ρ̂xy |W can have opposite signs.
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Applications of FWL
Midterm review

Hypothesis testing: Wald F-test

Consider a long regression
Y = Xβ + ε = X1β1 + X2β2 + ε,

where X1 : n × k, X2 : n × l , β1 ∈ Rk and β2 ∈ Rl .

▶ Want to test
H0 : β2 = 0.

Under GM-N ε ∼ N (0, σ2In), we can use F -test with C = (0l×k , Il) so Cβ = β2.

Recall:

Pivot for Cβ. Suppose C ∈ Rl×p has linearly independent rows. Under GM-N ,

FC :=
(C β̂ − Cβ)⊺

{
C (X⊺X )−1C⊺

}−1
(C β̂ − Cβ)

l σ̂2
∼ Fl,n−p.
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Applications of FWL
Midterm review

Hypothesis testing: Wald F-test

Also, recall:

Lemma We have

(X⊺X )−1 =

(
S11 S12
S21 S22

)
,

where

S11 = (X⊺
1 X1)

−1 + (X⊺
1 X1)

−1X⊺
1 X2(X̃

⊺
2 X̃2)

−1X⊺
2 X1(X

⊺
1 X1)

−1,

S12 = −(X⊺
1 X1)

−1X⊺
1 X2(X̃

⊺
2 X̃2)

−1,

S21 = S⊺
12,

S22 = (X̃⊺
2 X̃2)

−1.

▶ F-test (aka Wald) under GM-N :

FWald =
β̂⊺
2 (S22)

−1β̂2

l σ̂2
=

β̂⊺
2 X̃

⊺
2 X̃2β̂2

l σ̂2
∼ Fl,n−p.
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Applications of FWL
Midterm review

Hypothesis testing: ANOVA

Long regression: Y = X1β1 + X2β2 + ε X1 : n × k, X2 : n × l

▶ Under H0 : β2 = 0, it is reduced to
Short regression: Y = X1β1 + ε.

☞ Under H0, the two regressions should have ‘similar’ RSS’s:

RSSlong = Y ⊺(In − H)Y , RSSshort = Y ⊺(In − H1)Y .

▶ RSSlong ≤ RSSshort (why?)

▶ R. A. Fisher proposed the following ANOVA (Analysis of Variance) statistic:

FANOVA :=
(RSSshort − RSSlong)/l

RSSlong/(n − p)
=

RSSshort − RSSlong
l σ̂2

.
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Applications of FWL
Midterm review

Equivalence: Wald and ANOVA

Theorem Suppose X has linearly independent columns. Consider testing H0 : β2 = 0 in

Y = X1β1 + X2β2 + ε, X1 : n × k, X2 : n × l

with

FWald =
β̂⊺
2 (S22)

−1β̂2

l σ̂2
=

β̂⊺
2 X̃

⊺
2 X̃2β̂2

l σ̂2

and

FANOVA :=
(RSSshort − RSSlong)/l

RSSlong/(n − p)
=

RSSshort − RSSlong
l σ̂2

.

1 Under GM-N , FANOVA ∼ Fl,n−p under H0.

2 In fact, for any X ,Y without assuming GM-N , FWald = FANOVA numerically.
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Applications of FWL
Midterm review

Equivalence: Wald and ANOVA

Proof.

1 Under GM-N , FANOVA ∼ Fl,n−p under H0.

2 FWald = FANOVA numerically.
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Applications of FWL
Midterm review

Review: OLS

β̂ = argmin
b

n∑
i=1

(yi − b⊺xi )
2 = argmin

b
∥Y − Xb∥2.

▶ Normal equation∑
i

(yi − x⊺i β̂)xi = 0 ⇐⇒ X ⊺ (Y − X β̂) = 0 ⇐⇒ X ⊺Y = X ⊺X β̂.

▶ Projection, orthogonal decomposition

H = X (X ⊺X )−1X ⊺, Ŷ = HY , ε̂ = (In − H)Y .

∥Y ∥2 = ∥Ŷ ∥2 + ∥ε̂∥2.
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Applications of FWL
Midterm review

Review: Gauss–Markov

GM We have Y = Xβ + ε with

1 X is fixed and has linearly independent columns,

2 E ε = 0, cov ε = σ2In.

The unknown parameters are (β, σ2). ▶ Errors need not be independent.

Gauss–Markov Theorem. Under GM, let β̃ be any linear, unbiased estimator of β in the
sense that

1 β̃ = AY for some A ∈ Rp×n that does not depend on Y , (linear in what?)

2 E β̃ = β for every β.

Then the OLS β̂ satisfies
cov β̃ ⪰ cov β̂.
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Applications of FWL
Midterm review

Review: Gauss–Markov–Normal

GM-N We have Y = Xβ + ε with

1 X is fixed and has linearly independent columns,

2 ε ∼ N (0, σ2In).

The unknown parameters are (β, σ2). ▶ Errors are iid.

▶ Inference:

Tc :=
c⊺β̂ − c⊺β√
σ̂2c⊺(X⊺X )−1c

∼ tn−p.

FC :=
(C β̂ − Cβ)⊺

{
C (X⊺X )−1C⊺

}−1
(C β̂ − Cβ)

l σ̂2
∼ Fl,n−p.

▶ Prediction:
yn+1 − x⊺n+1β̂√

σ̂2 + σ̂2x⊺n+1(X
⊺X )−1xn+1

∼ tn−p.
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Applications of FWL
Midterm review

Review: heteroskedastic linear model

Hetero We have Y = Xβ + ε, ε = (ε1, . . . , εn)
⊺, where

1 X is fixed and has linearly independent columns,

2 εi ’s are independent with E εi = 0, var εi = σ2
i

The unknown parameters are (β, σ2
1 , . . . , σ

2
n). ▶ Errors are independent.

Theorem Consider Hetero model. Under

(A1) (good limits) Bn := n−1
n∑

i=1

xix
⊺
i → B (full rank), Mn := n−1

n∑
i=1

σ2
i xix

⊺
i → M

(A2) (moment condition) d2+δ,n := n−1
n∑

i=1

∥xi∥2+δ E |εi |2+δ < C for δ > 0, C > 0,

√
n(β̂ − β) →d N (0,B−1MB−1).
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Applications of FWL
Midterm review

Review: Eicker–Huber–White

Theorem Consider Hetero model. Suppose it holds that

(A1) (good limits) Bn := n−1
n∑

i=1

xix
⊺
i → B (full rank), Mn := n−1

n∑
i=1

σ2
i xix

⊺
i → M.

We have
Σ̂n = B−1

n M̂mB
−1
n →p B−1MB−1 = Σ

if the following (A3) (extra moment condition) holds:

n−1
∑
i

var(ε2i )x
2
i,j1x

2
i,j2 , n−1

∑
i

xi,j1xi,j2xi,j3xi,j4 , n−2
∑
i

σ2
i x

2
i,j1x

2
i,j2x

2
i,j3

are bounded above by some constant C for all n and every j1, j2, j3, j4 ∈ {1, . . . , p}.
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Applications of FWL
Midterm review

Review: Frisch–Waugh–Lovell

Long regression Y = X1︸︷︷︸
n×k

β̂1 + X2︸︷︷︸
n×l

β̂2 + ε̂

Frisch–Waugh–Lovell Theorem Suppose X has linearly independent columns. In the long
regression, the OLS for β2 has the following equivalent forms:

β̂2 = [(X⊺X )−1X⊺Y ](k+1):(k+l)

= {X⊺
2 (In − H1)X2}−1X⊺

2 (In − H1)Y , where H1 = X1(X
⊺
1 X1)

−1X⊺
1

= (X̃⊺
2 X̃2)

−1X̃⊺
2 Y , where X̃2 = (In − H1)X2

= (X̃⊺
2 X̃2)

−1X̃⊺
2 Ỹ , where Ỹ = (In − H1)Y .

▶ X̃2 is the residual matrix from columnwise OLS fit of X2 on X1.
▶ Ỹ is the residual from OLS fit of Y on X2.
▶ β̂2 is the OLS from Ỹ ∼ X̃2 (partial regression)

▶ β̂2 is also the OLS from Y ∼ X̃2 (no need to residualize Y ).
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Applications of FWL
Midterm review

Review: Gram–Schmidt and QR

Corollary (under orthogonality) When X⊺
1 X2 = 0, i.e., C(X1) ⊥ C(X2), we have

X̃2 = X2,

β̂2 from Y ∼ X1 + X2 = β̃2 from Y ∼ X2.

X = (X1, . . . ,Xp)

= (U1, . . . ,Up)


1 β̂X2|U1

β̂X3|U1
. . . β̂Xp |U1

0 1 β̂X3|U2
. . . β̂Xp |U2

...
...

... . . .
...

0 0 0 . . . 1



= Q diag(∥U1∥, . . . , ∥Up∥)


1 β̂X2|U1

β̂X3|U1
. . . β̂Xp |U1

0 1 β̂X3|U2
. . . β̂Xp |U2

...
...

... . . .
...

0 0 0 . . . 1

 = Q R.
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ANOVA
Cochran’s formula

One-way ANOVA
Two-way ANOVA

Recall: Wald and ANOVA equivalence

Theorem Suppose X has linearly independent columns. Consider testing H0 : β2 = 0 in

Y = X1β1 + X2β2 + ε, X1 : n × k, X2 : n × l

with

FWald =
β̂⊺
2 (S22)

−1β̂2

l σ̂2
=

β̂⊺
2 X̃

⊺
2 X̃2β̂2

l σ̂2

and

FANOVA :=
(RSSshort − RSSlong)/l

RSSlong/(n − p)
=

RSSshort − RSSlong
l σ̂2

.

1 Under GM-N , FANOVA ∼ Fl,n−p under H0.

2 In fact, for any X ,Y without assuming GM-N , FWald = FANOVA numerically.

2 / 15



ANOVA
Cochran’s formula

One-way ANOVA
Two-way ANOVA

Jargon

Traditionally,

• ANOVA (analysis of variance) – regression with indicator variables.

• ANCOVA (analysis of covariance) – regression with indicator and quantitative
variables.
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ANOVA
Cochran’s formula

One-way ANOVA
Two-way ANOVA

One-way ANOVA: Example

A health researcher wishes to compare the effects of four anti-inflammatory drugs on
arthritis patients. She takes a random sample of patients and divides them randomly
into four groups, each of which receives one of the drugs.
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ANOVA
Cochran’s formula

One-way ANOVA
Two-way ANOVA

One-way ANOVA: Example

• The type of drug is usually referred to as a factor or treatment.

• The four kinds of drug are referred to as levels of the factor.

• We can model this as follows: Yij = µi + εij where εij i.i.d. with mean zero and
variance σ2, and i = 1, . . . , I , j = 1, . . . , Ji .

• What does the design matrix look like?

• An alternative parametrization: Yij = α+ µi + εij ; need an identifiability
constraint.
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ANOVA
Cochran’s formula

One-way ANOVA
Two-way ANOVA

An example

Suppose we have observations {{yij}Jij=1}Ii=1, E(yij) = µi , var(yij) = σ2, and the yij ’s are all

independent. Let n =
∑I

i=1 Ji .

Observations Mean
Population 1 y11, . . . , y1j1 y1·

...
...

...
Population I yI1, . . . , yIjI y I ·

One-way ANOVA To test H0 : µ1 = . . . = µI , we use the F -statistic:

F =
(RSSH0 − RSS)/(I − 1)

RSS/(n − I )
=

∑
i Ji (y i· − y ··)

2/(I − 1)∑
i

∑
j(yij − y i·)

2/(n − I )
,

which has an Fl−1,n−l distribution under H0 if the errors are normally distributed, and approxi-
mately an F -distribution if the sample size is large. (why?)
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ANOVA
Cochran’s formula

One-way ANOVA
Two-way ANOVA

A typical analysis

1 Test for overall model significance (i.e. H0 : µ1 = . . . = µI ).

2 If the model is significant overall, then test specific contrasts of interest.

▶ Since this analysis involves performing multiple tests, some method for multiple
testing control must be applied, such as a Bonferroni correction.

▶ Outside the scope of this course

7 / 15



ANOVA
Cochran’s formula

One-way ANOVA
Two-way ANOVA

Typical results table for one-way ANOVA

ANOVA table with J1 = . . . = JI .

D.F. Sum of Squares Mean Sum of Squares
Groups I − 1 SSTrt = J

∑
i (y i· − y ··)

2 SSTrt/(I − 1)
Error I (J − 1) SSErr =

∑
i

∑
j(yij − y i·)

2 SSErr/(I (J − 1))

Total IJ − 1 SSTot =
∑

i

∑
j(yij − y ··)

2

Now we can see why it is called ANOVA.

F-test: F = SSTrt/(I−1)
SSErr/(I (J−1))
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ANOVA
Cochran’s formula

One-way ANOVA
Two-way ANOVA

Two-way ANOVA with balanced design: Example

A health researcher wishes to compare the effects of I anti-inflammatory drugs (factor
A), as well as J different dosages (factor B), on arthritis patients. In total, there are IJ
different combinations of the levels. She randomly assigns K patients to each
combination of levels; there are n = IJK patients in total.
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ANOVA
Cochran’s formula

One-way ANOVA
Two-way ANOVA

Two-way ANOVA with balanced design: Example

• We assume that yijk = µij + εijk where the εijk are i.i.d. with mean zero and
variance σ2 and where i = 1, . . . , I , j = 1, . . . , J, k = 1, . . . ,K .

• Tests:

1 Test H0 : µij = µ for all i , j .
2 Test whether the factors interact: does the effect of factor A at level i depend on

the level of factor B?
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ANOVA
Cochran’s formula

Cochran’s formula

Recall that from FWL that for X1 : n × k , X2 : n × l , from

long: Y = X1β̂1 + X2β̂2 + ε̂,

short: Y = X2β̃2 + ε̃,

we generally expect β̃2 ̸= β̂2. (When are they equal?)

Cochran’s formula The short regression coefficients can be written as

β̃2 = β̂2 + δ̂ β̂1,

where δ : l × k is from column-wise OLS

X1 = X2δ̂ + Û.
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ANOVA
Cochran’s formula

SEM interpretation

Cochran’s formula β̃2 = β̂2 + δ̂ β̂1 is a purely algebraic result that holds for OLS’s

long: Y = X1β̂1 + X2β̂2 + ε̂,

short: Y = X2β̃2 + ε̃,

intermediate: X1 = X2δ̂ + Û.
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ANOVA
Cochran’s formula

Proof.
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ANOVA
Cochran’s formula

Omitted-variable bias

Omitted-variable bias β̃2 − β̂2 = δ̂ β̂1.

▶ So β̃2 = β̂2 if either

1 δ̂ = 0 ⇐⇒ X1 ⊥ X2, or

2 β̂1 = 0 ⇐⇒ Y ⊥ X̃1 = (I − H2)X1.
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ANOVA
Cochran’s formula

Example: confounding bias

• zi : treatment (1: treated; 0: control)
• xi : observed baseline covariates

OLS: yi = β̃0 + β̃1zi + β̃⊺
2xi + ε̃i .

▶ But confounder ui may be unobserved. The ideal (but infeasible) OLS is

yi = β̂0 + β̂1zi + β̂⊺
2xi + β̂⊺

3ui + ε̂i .

Cochran’s formula:β̃0
β̃1
β̃2

 =

β̂0
β̂1
β̂2

+ β̂3

δ̂0
δ̂1
δ̂2

 =⇒ β̃1 − β̂1 = β̂3δ̂1,

where (δ̂0, δ̂1, δ̂2) comes from ui ∼ 1 + zi + xi .
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R2

Leverage
LOO

▶ Now, let us turn to the art part of linear models.
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R2

Leverage
LOO

Multiple correlation coefficient R2

Consider Y ∼ 1 + X , where X : n × (p − 1) and (1n,X ) has linearly independent columns.
Recall variance decomposition:∑

i

(yi − ȳ)2︸ ︷︷ ︸
total var

=
∑
i

(ŷi − ȳ)2︸ ︷︷ ︸
var explained

+
∑
i

(yi − ŷi )
2

︸ ︷︷ ︸
var unexplained (RSS)

. (why?)

Multiple correlation coefficient

R2 = (var explained %) =

∑
i (ŷi − ȳ)2∑
i (yi − ȳ)2

.

☞
RSS = (1− R2)

∑
i

(yi − ȳ)2.

3 / 15



R2

Leverage
LOO

R2 in equivalent forms

1

R2 = ρ̂2y ,ŷ .

2 Relation to ANOVA.

Y = 1nβ̂0 + X β̂ + ε̂

Y = 1nβ̃0 + ε̃.

☞

R2 =
RSSshort − RSSlong

RSSshort
.

Compare this with

FANOVA =
(RSSshort − RSSlong)/(p − 1)

RSSlong/(n − p)
.
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Leverage
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Distribution of R2

We have

FANOVA =
R2

1− R2
× n − p

p − 1
.

Null distribution of R2. Assume a GM-N model Y = 1nβ0 + Xβ + ε with ε ∼
N (0, σ2In). Suppose (1n,X ) has linearly independent columns. Then, under

H0 : β = 0 ⇐⇒ X explains no variance of Y in population,

we have

R2 ∼ Beta

(
p − 1

2
,
n − p

2

)
.

☞ ER2 = (p − 1)/(n − 1) under the null.
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Leverage

The leverage of observation i is

hii = (H)ii = x⊺i (X
⊺X )−1xi .

▶ Recall that ∑
i

hii = Tr(H) = rank(H) = n − p.

▶ It holds that 0 ≤ hii ≤ 1. (why?)

☞ Leverage only concerns X (not Y )!
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Leverage as a measure of ...

1 Sensitivity.

∂ŷi/∂yi = hii (why?)

Also, under GM, var(ŷi ) = σ2hii . (why?)

2 Outlier. Suppose X = (1n,X2) and let H1 = n−11n1
⊺
n.

Let S := (n − 1)−1
∑

i (x2,i − x̄2)(x2,i − x̄2)
⊺ be sample covariance of X2.

▶ Consider D2
i that measures the Mahalanobis distance between xi2 and x̄2:

D2
i := (xi2 − x̄2)

TS−1(xi2 − x̄2).

▶ Theorem 11.2

hii =
1

n
+

D2
i

n − 1
.
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R2

Leverage
LOO

Leverage and leave-one-out (LOO) formulae

▶ Consider OLS from deleting the i-th observation

β̂[−i ] := (X ⊺
[−i ]X[−i ])

−1X ⊺
[−i ]Y[−i ], i = 1, . . . , n.

☞ Basic idea: If i is not an outlier, result should not change much upon deleting i .

LOO formula When hii ̸= 1,

β̂[−i ] = β̂ − (1− hii )
−1(X ⊺X )−1xi ε̂i .

(What if hii = 1?)
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R2

Leverage
LOO

Predicted residual

▶ Recall that residual

ε̂i = yi − ŷi = yi − x⊺i β̂ = [(In − H)Y ]i

Under GM, var ε̂i = σ2(1− hii ) (why?)

▶ We use LOO to define the predicted residual

ε̂[−i ] := yi − x⊺i β̂[−i ].

Theorem We have
ε̂[−i ] = ε̂i/(1− hii ).

Under GM,
var ε̂[−i ] = σ2/(1− hii ).
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R2

Leverage
LOO

Standardized residual and studentized residual

▶ Under GM-N , ε̂i ∼ N (0, σ2(1− hii )). This motivates the standardized residual

standri :=
ε̂i√

σ̂2(1− hii )

(What is its distribution?)

▶ Under GM-N , ε̂[−i ] ∼ N (0, σ2/(1− hii )) and we define

studri :=
ε̂[−i ]√

σ̂2
[−i ] / (1− hii )

.

☞ Under GM-N , studri ∼ tn−1−p. (why?)
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R2

Leverage
LOO

Cook’s distance

▶ A related measure is Cook’s distance

cooki :=
∥X ⊺(β̂ − β̂[−i ])∥2

pσ̂2
.

▶ Cook’s distance is related to the standardized residual via

cooki = standr2i ×
hii

p(1− hii )
.
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R2

Leverage
LOO

lm() diagnostic plots in R

1 Residuals vs Fitted: studri ∼ ŷi . > plot(lm(y ∼ X))

https://library.virginia.edu/data/articles/diagnostic-plots
12 / 15
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R2

Leverage
LOO

lm() diagnostic plots in R

2 Normal QQ plot: sample quantiles of studri ∼ quantiles of N (0, 1).
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R2

Leverage
LOO

lm() diagnostic plots in R

3 Location-Scale plot:
√
|studri | ∼ ŷi .
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R2

Leverage
LOO

lm() diagnostic plots in R

4 Residuals vs Leverage: studri ∼ hii .

15 / 15



Population OLS
Misspecified linear model

BIOST/STAT 533, Sp 2024
Theory of Linear Models

Richard Guo

Lecture # 12: Population OLS, misspecified linear model
§12

1 / 7



Population OLS
Misspecified linear model

Population least squares

☞ Consider random variable Y and random vector X ∈ Rp.
☞ In this lecture, X and Y are no longer the data of n rows!

☞ X is not fixed but also random now!

Theorem For any measurable, real-valued function f (X ) of X , we have bias-variance
decomposition

E(Y − f (X ))2 = E{E[Y | X ]− f (X )}2 + E var[Y | X ].

Further, we have
E[Y | X ] = argmin

f
E(Y − f (X ))2,

where the minimization is over all square integrable, measurable function of X .
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Population OLS
Misspecified linear model

Population OLS

Now consider linear functions of X : f (X ) = β⊺X , β ∈ Rp.
▶ Population OLS:

β = argmin
b

E(Y − b⊺X )2 = argmin
b

E([E[Y | X ]− b⊺X )2. (why?)

☞ What is the interpretation of β⊺X?

Theorem β = (EXX ⊺)−1 E[XY ] when EXX ⊺ is invertible.

▶ For X ∈ R, univariate population OLS: (α, β) = argmina,b E(Y − a− bX )2.

α = EY − β EX , β =
cov(X ,Y )

varX
= ρXY

√
varY

varX
.

☞ ρXY = cov(X ,Y )√
var(X ) var(Y )

.

3 / 7



Population OLS
Misspecified linear model

Population FWL

Suppose Y is a random variable and X ∈ Rp−1 a random vector. Consider a population OLS

Y = β0 + β1X1 + · · ·+ βpXp−1 + ε.

Also consider the following population OLS’s: ☞ These equations define the residuals.

Xk = γ0 + γ1X1 + . . . γk−1Xk−1 + γk+1Xk+1 + · · ·+ γp−1Xp−1 + X̃k ,

Y = δ0 + δ1X1 + . . . δk−1Xk−1 + δk+1Xk+1 + · · ·+ δp−1Xp−1 + Ỹ ,

Ỹ = β̃k X̃k + ε̃.

Population FWL Theroem

1 βk = β̃k = cov(X̃k , Ỹ )/ var X̃k = cov(X̃k ,Y )/ var X̃k .

2 ε̃ = ε almost surely.
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Population OLS
Misspecified linear model

Population R2

▶ Nonparametric R2: For f ∗ = argminf ∈F E(Y − f (X ))2,

varY = E(Y − EY )2 = E(Y − f ∗(X ))2 + var f ∗(X ) , (why?)

and

R2
F =

var f ∗(X )

varY
∈ [0, 1].

▶ When F is the set of linear functions of (1,X ),

R2 =
ΣY ,XΣ

−1
X ,XΣX ,Y

varY
,

where

cov

(
X
Y

)
=

(
ΣX ,X ΣX ,Y

ΣY ,X varY

)
.
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Population OLS
Misspecified linear model

OLS inference when linear model is misspecified

Let (xi , yi ) be iid copies of (X ,Y ). We do not assume a linear model for Y ∼ X holds
in the population (data generating mechanism).

☞ Let β̂ be OLS from (xi , yi ) : i = 1, . . . , n.
Let β be the population OLS: ▶ Not assuming a linear model!

Y = β⊺X + ε.

Theorem Let (xi , yi )
n
i=1 be iid copies of (X ,Y ).

1 β̂ →p β.

2
√
n(β̂ − β) →d N (0,Σ), where

Σ = B−1MB−1, B = EXX ⊺, M = E(ε2XX ⊺).

3 Eicker-Huber-White ΣEHW →p Σ if E ∥X∥4 < ∞ and EY 4 < ∞.
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Population OLS
Misspecified linear model

Best linear approximation

The target of OLS β̂ is the

• the correct β if linear model holds;

• when linear model does not hold, the population OLS β = argminb E(Y − b⊺X )2;

• however, β not only depends on E[Y | X ], but also the distribution of X

β = argmin
b

E{E[Y | X ]− b⊺X}2.
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Population OLS

Caution of R2

R2 = (var explained %) =

∑
i (ŷi − ȳ)2∑
i (yi − ȳ)2

.

Recall that

Null distribution of R2. Assume a GM-N model Y = 1nβ0 + Xβ + ε with ε ∼
N (0, σ2In). Suppose (1n,X ) has linearly independent columns. Then, under

H0 : β = 0 ⇐⇒ X explains no variance of Y in population,

we have

R2 ∼ Beta

(
p − 1

2
,
n − p

2

)
.

☞ ER2 = (p − 1)/(n − 1) under the null. What happens when p/n → γ?
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Population OLS

Variance inflation factor

Let X : n × (p − 1) be a fixed design matrix. Suppose

yi = f (xi ) + εi ,

where εi ’s are uncorrelated with mean zero and variance σ2.

Short regression: Y = α̃+ β̃jXj + ε̃

Long regression: Y = α̂+ β̂1X1 + · · ·+ β̂p−1Xp−1 + ε̂.

Theorem We have

var β̂j = var β̃j ×
1

1− R2
j︸ ︷︷ ︸

VIF

,

where R2
j is the R2 from OLS Xj ∼ 1 + X−j .

3 / 19



Population OLS

Bias-variance trade-off

Suppose the true data generating mechanism is

yi = β0 + β1xi ,1 + · · ·+ βsxi ,s + εi

with s non-null covariates.

☞ Consider running OLS fitting Y on X1, . . . ,Xp.

• What happens when p < s?

• What happens when p > s?
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Population OLS

Typical trade-off: under linear model
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Population OLS

Typical trade-off: under a non-linear model
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Population OLS

Adjusted R2

Recall that ∑
i

(yi − ȳ)2︸ ︷︷ ︸
total var

=
∑
i

(ŷi − ȳ)2︸ ︷︷ ︸
var explained

+
∑
i

(yi − ŷi )
2

︸ ︷︷ ︸
var unexplained (RSS)

.

▶

1− R2 =

∑
i (yi − ŷi )

2∑
i (yi − ȳ)2

=
∥(I − H)Y ∥2

∥(I − H1)Y ∥2

To account for model complexity, define adjusted R2 as

R̄2 = 1− (1− R2)
n − 1

n − p
= 1− ∥(I − H)Y ∥2/(n − p)

∥(I − H1)Y ∥2/(n − 1)
= 1− σ̂2

σ̂2
Y

.
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Population OLS

Mallow’s Cp

Cp := ∥Y − Ŷ ∥2 + 2pσ2.

▶ Infeasible but unbiased for MSPE over the same X but new Y
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Population OLS

Akaike’s information criterion (AIC)

Consider the more general set up: Yi ∼ f (y), i = 1, . . . , n but a parametric model
Yi ∼ f (y ; θ) is fitted over an Euclidean model space Θ.

AIC = −2
n∑

i=1

logf (Yi ; θ̂) + 2dim(Θ)

• For model selection, AIC attempts to estimate prediction error
−2Ef {logf (Yn+1; θ̂) | θ̂}, where the expectation is taken over a new observation
Yn+1.

• 2 dim(Θ) is a correction term
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Population OLS

Bayesian information criterion (BIC)

BIC is motivated by Bayesian perspective on model selection and is defined as

BIC(Θ) = −2
n∑

i=1

logf (Yi ; θ̂) + dim(Θ)logn

• Intuition: suppose {Θ1, . . . ,Θm} is a collection of model spaces. If we assign a
uniform prior on the model spaces, P(Θk) =

1
m for all k . Then as n → ∞, the

posterior probability for a model is approximately P(Θk | Data) ∝ e−BIC(Θk )/2.

• Compared with AIC, BIC puts a larger penalty on model complexity and thus
selects a smaller model.

• Rule of thumb: AIC is more suitable for prediction and BIC is more suitable for
selecting the “correct” model.
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Population OLS

AIC and BIC

Under GM-N ,

AIC = n log
RSS

n
+ 2p

BIC = n log
RSS

n
+ p logn.

(why?)

▶ Shao (1997):

• If the linear model is correctly specified, BIC can consistently select the true
model.

• Even when the linear model is misspecified, AIC can select the model that
minimizes the prediction error.
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Population OLS

Cross-validation and its approximation

▶ We can use K -fold CV to select covariates.
▶ When K = n, we can use LOO formula to approximate the actual CV.
Recall the LOO predicted residual:

ε̂[−i ] := yi − x⊺i β̂[−i ] =
ε̂i

1− hii
.

▶ Define the predicted residual error sum of squares PRESS :=
∑
i

ε̂2[−i ].

Replacing hii ≈ p/n (why?),

PRESS ≈ GCV :=
∑
i

ε2i
(1− p/n)2

= (1− p/n)−2 × RSS.

▶ When p/n ≈ 0, logGCV is approximately equivalent to AIC. (why?)
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Population OLS

Algorithms for model selection

• Best subset selection

• Forward stepwise

• Backward stepwise

13 / 19



Population OLS

Best subset selection

• We have p possible predictors and we want to know which to use in our model.

• We could consider every possible model (there are 2p of them) and select the one
with smallest cross-validation error.

• If p = 3 there are 23 = 8 possible models.

• If p = 6 there are 26 = 64 possible models.

• If p = 250 there are 2250 ≈ 1080 possible models.

• Obviously we need a more efficient alternative.
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Population OLS

Forward stepwise selection

1 Fit p univariate regression models – one with each predictor – and select the
predictor corresponding to the most significant model (largest F-stat, or
equivalently reduces the RSS the most).

2 Then fit p − 1 models containing the predictor that we just selected and each of
the p − 1 other predictors. Select the predictor corresponding to the most
significant model.

3 Now we have selected 2 predictors. Fit the p − 2 models containing these 2
predictors, and each of the p − 2 other predictors. Select the predictor
corresponding to the most significant model.

4 And so on....

This procedure will result in p + 1 distinct models, containing between 0 and p
predictors.

15 / 19



Population OLS

Backward stepwise selection

Just like forward stepwise, but we instead start with the model containing all of the
features and remove features one-at-a-time.
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Population OLS

Pros and cons of stepwise selection

• Backward and forward stepwise selection are much more efficient than best subset
selection... they require looking at p + (p − 1) + . . . (on the order of p2) models,
rather than 2p models!

• However, backward stepwise and forward stepwise will give us different answers!

• They will not give us the “best” model for a fixed number of predictors.
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Population OLS

Example

For 0,1,2,3 regressors,

• The best subset algorithm selects ∅, {3}, {1, 2}, {1, 2, 3}
• The forward stepwise algorithm selects ∅, {3}, {2, 3}, {1, 2, 3}
• The backward stepwise algorithm selects ∅, {2}, {1, 2}, {1, 2, 3}
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Population OLS

Model selection

• With the path plot, we can then select a single model by using one of the
quantitative criteria introduced above.

• This can be combined with model diagnostics.
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Generalized least squares
Weighted least squares
Transformations in OLS

Recall: Gauss-Markov

GM The data generating process obeys Y = Xβ + ε,

1 X is fixed and has linearly independent columns,

2 E ε = 0, cov ε = σ2In.

The unknown parameters are (β, σ2).

Gauss–Markov Theorem. Under GM, let β̃ be any linear, unbiased estimator of β in the
sense that

1 β̃ = AY for some A ∈ Rp×n that does not depend on Y ,

2 E β̃ = β for every β.

Then the OLS β̂ satisfies
cov β̃ ⪰ cov β̂.

▶ OLS is BLUE under GM. 2 / 15



Generalized least squares
Weighted least squares
Transformations in OLS

Gauss-Markov Generalized model

GM-Generalized (aka. Aitkin model) The data generating process obeys Y = Xβ + ε,

1 X is fixed and has linearly independent columns,

2 E ε = 0, cov ε = σ2Σ.

The unknown parameters are (β, σ2); Σ is a known positive definite matrix.

Special cases:

• Σ = In ▶ GM

• Σ = diag(w−1
1 , . . . ,w−1

n ) ▶ weighted least squares

• Σ = diag(Σ1,Σ2, . . . ,ΣK ) ▶ clusters

☞ Note that Σ is known under GM-Generalized.
Hence, Σ = diag(w−1

1 , . . . ,w−1
n ) is different from Hetero.

3 / 15



Generalized least squares
Weighted least squares
Transformations in OLS

Recall: Heteroskedastic linear model

Hetero The data generating process obeys

Y = Xβ + ε, ε = (ε1, . . . , εn)
⊺,

where

1 X is fixed and has linearly independent columns,

2 εi ’s are independent with E εi = 0, var εi = σ2
i

The unknown parameters are (β, σ2
1 , . . . , σ

2
n).
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Generalized least squares
Weighted least squares
Transformations in OLS

OLS, GLS and BLUE

GM-Generalized (aka. Aitkin model) The data generating process obeys Y = Xβ + ε,

1 X is fixed and has linearly independent columns,

2 E ε = 0, cov ε = σ2Σ.

The unknown parameters are (β, σ2); Σ is a known positive definite matrix.

▶ OLS is unbiased but not BLUE under GM-Generalized. (why?)

Theorem Under GM-Generalized, the generalized least squares (GLS) is BLUE:

β̂Σ := (X⊺Σ−1X )−1X⊺Σ−1Y .

Further, we have
E β̂Σ = β, cov β̂Σ = σ2(X⊺Σ−1X )−1.
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Generalized least squares
Weighted least squares
Transformations in OLS

OLS, GLS and BLUE

☞ From comparing OLS and GLS,

(X⊺Σ−1X )−1 ⪯ (X⊺X )−1X⊺ΣX (X⊺X )−1.

☞ What happens if using GLS β̂Ω (for some covariance Ω) under GM-Generalized with
covariance Σ?

6 / 15



Generalized least squares
Weighted least squares
Transformations in OLS

Weighted least squares

When Σ = diag(w−1
1 , . . . ,w−1

n ), the weighted least squares (WLS) is

β̂w = β̂Σ = (X⊺Σ−1X )−1X⊺Σ−1Y

=

(∑
i

wixix
⊺
i

)−1∑
i

wixiyi .

▶ Under GM-Generalized,

cov β̂w = σ2

(∑
i

wixix
⊺
i

)−1

.

▶ Under Hetero, we have Eicker-Huber-White estimator for the asymptotic covariance of β̂w :

Σ̂EHW,w =

(
n−1

∑
i

wixix
⊺
i

)−1(
n−1

∑
i

w2
i ε̂

2
w ,ixix

⊺
i

)(
n−1

∑
i

wixix
⊺
i

)−1

(why?)
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Generalized least squares
Weighted least squares
Transformations in OLS

Weighted least squares: Two-stage under heteroskedasticity

Consider Hetero model where σ2
1 , . . . , σ

2
n are unknown.

• OLS is consistent, but not efficient.

• WLS (with wi = σ−2
i ) is consistent and efficient — but the true weights are unknown!

Two-stage method:

1 Use OLS to estimate β and get residuals ε̂1, . . . , ε̂n.

2 Use ε̂1, . . . , ε̂n to estimate a postulated model of σ2
i = σ2(xi ; θ).

▶ E.g., fit a linear model log(ε̂2i ) ∼ X and exponentiate.

3 Fit WLS β̂ŵ with ŵi = σ−2(xi ; θ̂), i=1,. . . ,n.

4 Inference with Eicker-Huber-White covariance for β̂ŵ .
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Generalized least squares
Weighted least squares
Transformations in OLS

Weighted least squares: Survey sampling
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Generalized least squares
Weighted least squares
Transformations in OLS

Weighted least squares: Survey sampling

▶ Ideal estimator

β̂ideal =

(
N∑
i=1

xix
⊺
i

)−1 N∑
i=1

xiyi .

▶ Sampling probability

Ii = I{unit i is included in the sample}, πi = P(Ii = 1 | Xi , yi ).

▶ Horvitz and Thompson (1952) inverse probability weighting (IPW)

β̂IPW :=

(
N∑
i=1

Ii
πi
xix

⊺
i

)−1 N∑
i=1

Ii
πi
xiyi =

 n∑
j=1

π−1
j xjx

⊺
j

−1
n∑

j=1

π−1
j xjyj .

☞ E[ Iiπi
| xi , yi ] = 1.
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Generalized least squares
Weighted least squares
Transformations in OLS

▶ Some tricks of the trade: transformations of outcome and covariates.
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Generalized least squares
Weighted least squares
Transformations in OLS

Transform of the outcome: log

For yi > 0,
logyi = x⊺i β + εi .

▶ Would do you interpret it?

▶ When yi ∼ N (µi , σ
2µ2

i ), where
sd(yi ) ∝ E yi ,

then it is a good idea to take log transform:

logyi − logµi ≈ (yi − µi )/µi ∼ N (0, σ2). (why?)

☞ e.g., yi is the time that runner i takes to finish distance µi

▶ When y ≥ 0, log(yi + 1) is used frequently. ☞ e.g., gene expression
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Generalized least squares
Weighted least squares
Transformations in OLS

Transform of the outcome: Box–Cox

George Box and Sir David Cox (1964) consider a family of transformations on y :

gλ(y) =

{
(yλ − 1)/λ, λ ̸= 0

log y , λ = 0
.

▶ Yλ = (gλ(y1), . . . gλ(yn))
⊺ ∼ N (Xβ, σ2In) yields likelihood L(β, σ2, λ;Y ).

▶ Draw profile log-likelihood lp(λ) = logL(β̂(λ), σ̂2(λ), λ;Y ) and construct 95% CI for λ

around the maximizer λ̂ based on

2(lP(λ̂)− lP(λ)) →d χ2(1).
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Generalized least squares
Weighted least squares
Transformations in OLS

Transform of the covariates: regression discontinuity and kink
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Generalized least squares
Weighted least squares
Transformations in OLS

Transform of the covariates: regression discontinuity and kink

▶ Testing H0: no treatment effect boils down to testing

H0 : regression is continuous (i.e. a kink) at x = c . ⇐⇒ β3 = 0 in

yi =

{
β1 + β2(xi − c) + εi , xi ≤ c

(β1 + β3) + (β2 + β4)(xi − c) + εi , xi > c .

▶ This piecewise linear model can be parameterized as a linear model

yi = β1 + β2(xi − c) + β3 I(xi > c) + β4 (xi − c) I(xi > c) + εi

▶ Similarly, we can test H ′
0 : no kink using Rc(xi ) := max(0, xi − c):

yi = β1 + β2Rc(xi ) + β3(xi − c) + εi ,

where H ′
0 ⇐⇒ β2 = 0.
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Models
OLS

Model checking and selection

Final Exam

Monday June 3: 2:30 – 4:20 PM, this classroom. Open notes / books. No electronics.
Covers the whole course.
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Models
OLS

Model checking and selection

Covered: Before midterm

1 Linear algebra: column space, orthogonal matrix, eigendecomposition, projection

2 OLS: algebra and geometry

3 GM model, RSS, σ̂2, Gauss-Markov theorem

4 GM-N model, pivotal t and F inference

5 Hetero model, consistency and asymptotic normality of β̂

6 Eicker-Huber-White covariance estimation

7 Long and short regressions; Frisch–Waugh–Lovell theorem; QR decomposition
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Models
OLS

Model checking and selection

Covered: After midterm

1 ANOVA (and its equivalence to Wald test); one-way and two-way ANOVA;
ANOVA with parameters under constraints; degrees of freedom

2 Orthogonal decomposition of RSS and variance; R2

3 Cochran’s formula; omitted variable bias

4 Leverage; leave-one-out; predicted residuals; diagnostic plots

5 Misspecified linear model and its interpretation; population OLS; inference for the
population OLS

6 Overfitting; bias-variance tradeoff; mean squared prediction error; Mallow’s Cp;
AIC and BIC; model selection

7 Generalized least squares; weighted least squares
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Models
OLS

Model checking and selection

Gauss–Markov

GM We have Y = Xβ + ε with

1 X is fixed and has linearly independent columns,

2 E ε = 0, cov ε = σ2In.

The unknown parameters are (β, σ2). ☞ Errors need not be independent.

▶ OLS is BLUE under GM.

GM-Generalized (aka. Aitkin model) We have Y = Xβ + ε, where

1 X is fixed and has linearly independent columns,

2 E ε = 0, cov ε = σ2Σ.

The unknown parameters are (β, σ2); Σ is a known positive definite matrix.

▶ GLS is BLUE under GM-Generalized.
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Models
OLS

Model checking and selection

Gauss–Markov–Normal

GM-N We have Y = Xβ + ε with

1 X is fixed and has linearly independent columns,

2 ε ∼ N (0, σ2In).

The unknown parameters are (β, σ2). ▶ Errors are iid.

▶ Inference:

Tc :=
c⊺β̂ − c⊺β√
σ̂2c⊺(X⊺X )−1c

∼ tn−p.

FC :=
(C β̂ − Cβ)⊺

{
C (X⊺X )−1C⊺

}−1
(C β̂ − Cβ)

l σ̂2
∼ Fl,n−p.

▶ Prediction:
yn+1 − x⊺n+1β̂√

σ̂2 + σ̂2x⊺n+1(X
⊺X )−1xn+1

∼ tn−p.
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Gauss–Markov–Normal

▶ Question: For Y = Xβ + ε, Under GM-N , how would you test β1 = 0?
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Lemma We have

(X ⊺X )−1 =

(
S11 S12
S21 S22

)
,

where

S11 = (X ⊺
1X1)

−1 + (X ⊺
1X1)

−1X ⊺
1X2(X̃

⊺
2 X̃2)

−1X ⊺
2X1(X

⊺
1X1)

−1,

S12 = −(X ⊺
1X1)

−1X ⊺
1X2(X̃

⊺
2 X̃2)

−1,

S21 = S⊺
12,

S22 = (X̃ ⊺
2 X̃2)

−1.
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Heteroskedastic linear model

Hetero We have Y = Xβ + ε, ε = (ε1, . . . , εn)
⊺, where

1 X is fixed and has linearly independent columns,

2 εi ’s are independent with E εi = 0, var εi = σ2
i

The unknown parameters are (β, σ2
1 , . . . , σ

2
n). ▶ Errors are independent.

Theorem Consider Hetero model. Under

(A1) (good limits) Bn := n−1
n∑

i=1

xix
⊺
i → B (full rank), Mn := n−1

n∑
i=1

σ2
i xix

⊺
i → M

(A2) (moment condition) d2+δ,n := n−1
n∑

i=1

∥xi∥2+δ E |εi |2+δ < C for δ > 0, C > 0,

√
n(β̂ − β) →d N (0,B−1MB−1).

9 / 20



Models
OLS

Model checking and selection

Eicker–Huber–White

Theorem Consider Hetero model. Suppose it holds that

(A1) (good limits) Bn := n−1
n∑

i=1

xix
⊺
i → B (full rank), Mn := n−1

n∑
i=1

σ2
i xix

⊺
i → M.

We have
Σ̂n = B−1

n M̂nB
−1
n →p B−1MB−1 = Σ

if the following (A3) (extra moment condition) holds:

n−1
∑
i

var(ε2i )x
2
i,j1x

2
i,j2 , n−1

∑
i

xi,j1xi,j2xi,j3xi,j4 , n−2
∑
i

σ2
i x

2
i,j1x

2
i,j2x

2
i,j3

are bounded above by some constant C for all n and every j1, j2, j3, j4 ∈ {1, . . . , p}.
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Eicker–Huber–White

Logic of Eicker–Huber–White:

1 Write β̂ as a function of the random response

2 Derive the covariance of β̂ — sandwich form

3 Estimate each piece

11 / 20



Models
OLS

Model checking and selection

Review: Gram–Schmidt and QR

Corollary (under orthogonality) When X⊺
1 X2 = 0, i.e., C(X1) ⊥ C(X2), we have

X̃2 = X2,

β̂2 from Y ∼ X1 + X2 = β̃2 from Y ∼ X2.

X = (X1, . . . ,Xp)

= (U1, . . . ,Up)


1 β̂X2|U1

β̂X3|U1
. . . β̂Xp |U1

0 1 β̂X3|U2
. . . β̂Xp |U2

...
...

... . . .
...

0 0 0 . . . 1



= Q diag(∥U1∥, . . . , ∥Up∥)


1 β̂X2|U1

β̂X3|U1
. . . β̂Xp |U1

0 1 β̂X3|U2
. . . β̂Xp |U2

...
...

... . . .
...

0 0 0 . . . 1

 = Q R.

12 / 20



Models
OLS

Model checking and selection

OLS and population OLS

OLS As an algebraic operation on data X ∈ Rn×p, Y ∈ Rn,

β̂ = argmin
b

∥Y − Xb∥2 = (X⊺X )−1X⊺Y .

We have orthogonal decomposition ☞ Orthogonal in what sense?

Y = Ŷ + ε̂ = HY + (I − H)Y .

Population OLS As an approximation to P(X ,Y ) of random X ∈ Rp, Y ∈ R,

β = argmin
b

E ∥Y − X⊺b∥2 = E(XX⊺)−1 E[XY ]

☞ How do we interpret β? ☞ Orthogonal in what sense?

We have orthogonal decomposition
Y = β⊺X + ε.
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OLS and population OLS: FWL theorems

OLS FWL Suppose X has linearly independent columns. Consider long regression

Y = X1β̂1 + X2β̂2 + ε̂.

▶ β̂2 from equals OLS from short regression Y ∼ X̃2 and Ỹ ∼ X̃2.
▶ ε̂ equals residuals from short regression Ỹ ∼ X̃2. ☞ How do you partial out X1?

Population OLS FWL Consider a population OLS ☞ What does this equation mean?

Y = X⊺
1 β1 + X⊺

2 β2 + ε.

▶ β equals population OLS Y ∼ X̃2 and Ỹ ∼ X̃2. ☞ How do you partial out X1?
▶ ε equals the residual from Ỹ ∼ X̃2 almost surely.
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OLS and population OLS: FWL theorems

▶ Question: Consider a fixed design X : n × p with linearly independent columns. Let
Z : n × (p − 1) be X without the last column.

For a random response vector Y ∈ Rn, let

β̂X := argmin
b

∥Y − Xb∥2, β̂Z := argmin
b:last entry of b is zero

∥Y − Xb∥2.

1 What are β̂X and β̂Z in closed form?

2 Which gives a higher R2?

3 For fitted values, is it true that ∥ŶZ∥ ≤ ∥ŶX∥?
4 Is it true that var(β̂Z )1 ≤ var(β̂X )1?
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FWL theorem and Cochran’s formula

▶ FWL: Get long regression coefficients from a partialled-out short regression.

Cochran’s (omitted variable bias) formula

β̃2 = β̂2 + δ̂ β̂1

long: Y = X1β̂1 + X2β̂2 + ε̂,

short: Y = X2β̃2 + ε̃,

intermediate: X1 = X2δ̂ + Û.
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FWL theorem and Cochran’s formula

▶ Question: When do you have β̂2 = β̃2?
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Multiple correlation coefficient R2

Consider Y ∼ 1 + X , where X : n × (p − 1) and (1n,X ) has linearly independent columns.
Recall variance decomposition:∑

i

(yi − ȳ)2︸ ︷︷ ︸
total var

=
∑
i

(ŷi − ȳ)2︸ ︷︷ ︸
var explained

+
∑
i

(yi − ŷi )
2

︸ ︷︷ ︸
var unexplained (RSS)

. (why?)

Multiple correlation coefficient

R2 = (var explained %) =

∑
i (ŷi − ȳ)2∑
i (yi − ȳ)2

.

☞
RSS = (1− R2)

∑
i

(yi − ȳ)2.
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Leverage and Leave-one-out

▶ Leverage of i-th observation:

hii = (X (X ⊺X )−1X ⊺)ii = x⊺i (X
⊺X )−1xi .

▶ LOO predicted residual:
ε̂[−i ] = ε̂i/(1− hii ).

▶ Question: Under GM,
var ε̂i =? var ε̂[−i ] =?
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Model selection

▶ Mallow’s Cp = ∥Y − Ŷ ∥2 + 2pσ2

☞ unbiased estimate of MSPE (mean squared prediction error)

▶

AIC = n log
RSS

n
+ 2p

☞ For selecting model with small prediction error

▶

BIC = n log
RSS

n
+ p logn

☞ For selecting the true model, when the linear model holds
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