BIOST/STAT 533, Sp 2024 Theory of Linear Models

Richard Guo

Lecture # 1: \$1-2

'Linear regression' and 'linear model' are used interchangeably. What is 'regression'?

▶ Francis Galton (1822–1911), Darwin's nephew, controversial guy

Galton's 'regression to the mean'

Francis Galton's example.

> GaltonFamilies

family father mother midparentHeight children childNum gender childHeight

	-							
1	001	78.5	67.0	75.43	4	1	male	73.2
2	001	78.5	67.0	75.43	4	2	female	69.2
3	001	78.5	67.0	75.43	4	3	female	69.0
4	001	78.5	67.0	75.43	4	4	female	69.0
5	002	75.5	66.5	73.66	4	1	male	73.5
6	002	75.5	66.5	73.66	4	2	male	72.5
7	002	75.5	66.5	73.66	4	3	female	65.5
8	002	75.5	66.5	73.66	4	4	female	65.5
9	003	75.0	64.0	72.06	2	1	male	71.0
10	003	75.0	64.0	72.06	2	2	female	68.0

Galton's 'regression to the mean'

$$x_i = \texttt{midparentHeight}_i = (\texttt{father} + 1.08\,\texttt{mother})/2$$
 $y_i = \texttt{childHeight}_i.$

Galton determines that the 'best fitted line' can be written as

$$\frac{\mathbf{y} - \bar{\mathbf{y}}}{\hat{\sigma}_{\mathbf{y}}} = \hat{\rho} \, \frac{\mathbf{x} - \bar{\mathbf{x}}}{\hat{\sigma}_{\mathbf{x}}},$$

where $|\hat{
ho}| < 1$ — "regression to the mean / mediocre".

Galton's 'regression to the mean'

Ordinary least squares (OLS)

The best fitted line $y = \hat{\alpha} + \hat{\beta}x$ is defined to be

$$(\hat{\alpha}, \hat{\beta}) = \operatorname*{arg\,min}_{\alpha, \beta} \sum_{i} (y_i - \alpha - \beta x_i)^2.$$

► Gauss and Legendre
 ► Not Σ_i |y_i − α − βx_i|

Normal equations:

$$\sum_{i} y_{i} - \hat{\alpha} - \hat{\beta} x_{i} = 0 \implies \bar{y} - \hat{\alpha} - \hat{\beta} \bar{x} = 0$$
$$\sum_{i} x_{i} (y_{i} - \hat{\alpha} - \hat{\beta} x_{i}) = 0 \implies \bar{x} \bar{y} - \hat{\alpha} \bar{x} - \hat{\beta} \bar{x}^{2} = 0.$$

goes through data center

Subtracting 1st eqn multiplied by \bar{x} , we get

$$(\overline{x^2} - \overline{x}^2)\hat{\beta} = \overline{xy} - \overline{x}\overline{y}$$

Ordinary least squares (OLS) for univariate X

Univariate OLS

$$\hat{\beta} = \frac{\hat{\sigma}_{xy}}{\hat{\sigma}_x^2} = \frac{\hat{\rho}_{xy}\hat{\sigma}_x\hat{\sigma}_y}{\hat{\sigma}_x^2} = \frac{\hat{\rho}_{xy}\hat{\sigma}_y}{\hat{\sigma}_x}.$$

The fitted line is

$$y = \hat{\alpha} + \hat{\beta}x = (\bar{y} - \hat{\beta}\bar{x}) + \hat{\beta}x$$
$$y - \bar{y} = \hat{\beta}(x - \bar{x})$$
$$y - \bar{y} = \frac{\hat{\beta}_{xy}\hat{\sigma}_y}{\hat{\sigma}_x}(x - \bar{x})$$

$$\frac{y-\bar{y}}{\hat{\sigma}_y} = \hat{\rho}_{xy} \frac{x-\bar{x}}{\hat{\sigma}_x}.$$

▶ $\hat{\rho}_{xy} = 0.32 < 1$ — 'regression to the mean' by Galton, "the average regression of the offspring is a constant fraction of their respective mid-parental deviations" ▶ Does it make sense?

Without intercept

$$\hat{eta} = \operatorname*{arg\,min}_{b} \sum_{i} (y_i - b \, x_i)^2$$

From normal equation

$$\sum_i x_i(y_i - \hat{\beta} x_i) = 0,$$

we get

$$\hat{\beta} = \frac{\sum_{i} x_{i} y_{i}}{\sum_{i} x_{i}^{2}} = \frac{\langle x, y \rangle}{\langle x, x \rangle}.$$

▶ Will be used a lot later!

Multiple linear regression

Multiple covariates

$$X = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & & \vdots \\ x_{n1} & x_{n2} & \dots & x_{np} \end{pmatrix} = \begin{pmatrix} x_1^{\mathsf{T}} \\ x_2^{\mathsf{T}} \\ \vdots \\ x_n^{\mathsf{T}} \end{pmatrix} = (X_1, \dots, X_p)$$

 \triangleright row x_i , column X_i

and single outcome

$$Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}.$$

Jargon

X_j	Y			
Regressor	Response			
Covariate	Outcome			
Feature	Label			
Predictor				
Explanatory variable				
Independent variable	Dependent variable			

OLS

Find the best fitted line

$$y_i = \hat{\beta}_1 x_{i1} + \dots + \hat{\beta}_p x_{i1} = x_i^{\mathsf{T}} \hat{\beta}$$

for

$$X = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & & \vdots \\ x_{n1} & x_{n2} & \dots & x_{np} \end{pmatrix}, \quad Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}.$$
$$\hat{\beta} = \arg\min_{b} \sum_{i=1}^{n} (y_i - b^{\mathsf{T}} x_i)^2 = \arg\min_{b} ||Y - Xb||^2.$$

Normal equation

$$\sum_{i} (y_i - x_i^{\mathsf{T}} \hat{\beta}) x_i = \mathbf{0} \iff X^{\mathsf{T}} (Y - X \hat{\beta}) = \mathbf{0} \iff X^{\mathsf{T}} Y = X^{\mathsf{T}} X \hat{\beta}.$$

OLS

If $X^{\intercal}X$ is invertible,

$$\widehat{\beta} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}Y. \iff \widehat{\beta} = \left(\sum_{i} x_{i}x_{i}^{\mathsf{T}}\right)^{-1}\left(\sum_{i} y_{i}x_{i}\right).$$

 $X^\intercal X$ invertible requires that for any $\mathbf{0} \neq a \in \mathbb{R}^p$,

$$a^{\mathsf{T}}(X^{\mathsf{T}}X)a = \|Xa\|^2 \neq 0 \iff Xa \neq 0,$$

i.e., $X = (X_1, \ldots, X_p)$ are linearly independent.

➡ Throughout, we assume

Condition: Column vectors of *X* are linearly independent.

• Must have $n \ge p$ (why?)

BIOST/STAT 533, Sp 2024 Theory of Linear Models

Richard Guo

Lecture # 2: Review of linear algebra Appendix A

Recall

• Univariate OLS $y = \alpha + \beta x$:

$$y-ar{y}=\widehat{eta}(x-ar{x}), \quad \widehat{eta}=rac{\widehat{\sigma}_{xy}}{\widehat{\sigma}_x^2}.$$

► Univariate OLS
$$y = \beta x$$
:
 $\widehat{\beta} = \frac{\langle x, y \rangle}{\langle x, x \rangle}.$

• Multivariate OLS $y = \beta^{\mathsf{T}} x$:

$$X^{\mathsf{T}}(Y - X\widehat{eta}) = 0, \quad \widehat{eta} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}Y.$$

Vectors

For $x, y \in \mathbb{R}^n$,

- $\langle x, y \rangle = x^{\mathsf{T}} y = \sum_{i} x_{i} y_{i}$
- $||x||^2 = \langle x, x \rangle$
- Cauchy-Schwartz |⟨x, y⟩| ≤ ||x|| ||y||.
 i=' holds iff ax = by for some scalar a, b.
- Triangle $||x + y|| \le ||x|| + ||y||$
- Orthogonal $x \perp y$: $x^{\intercal}y = 0$

•
$$\widehat{\rho}_{xy} = \cos \angle (x - \overline{x}, y - \overline{y}) = \frac{\langle x - \overline{x}, y - \overline{y} \rangle}{\|x - \overline{x}\| \|y - \overline{y}\|}$$

Follows from above

 \blacktriangleright when achieves $\pm 1?$

Matrix, row space, column space

$$A = (a_{ij})_{n \times m} = \begin{pmatrix} a_{11} & \dots & a_{1m} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nm} \end{pmatrix} = \begin{pmatrix} a_1^{\mathsf{T}} \\ \vdots \\ a_n^{\mathsf{T}} \end{pmatrix} = (A_1, \dots, A_m).$$

Column space

$$\mathcal{C}(A) = \{\alpha_1 A_1 + \ldots \alpha_m A_m : \alpha_1, \ldots, \alpha_m \in \mathbb{R}\} = \{A\alpha : \alpha \in \mathbb{R}^m\}.$$

► Row space

$$\mathcal{R}(A) = \{r_1 a_1 + \dots + r_n a_n : r_1, \dots, r_n \in \mathbb{R}\} = \{A^{\mathsf{T}} r : r \in \mathbb{R}^n\}$$
$$\blacktriangleright C(A) = \mathcal{R}(A^{\mathsf{T}})$$

Matrix as a linear map

A matrix $A \in \mathbb{R}^{p \times r}$ is a linear map from \mathbb{R}^r to \mathbb{R}^p : $x \mapsto Ax$ for $x \in \mathbb{R}^r$.

• Rotation by
$$\theta$$
 counterclockwise: $A = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$
• Reflection: $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ and $A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
• Scale by 2 in all directions: $A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$

Matrix multiplication, rank

For
$$A : n \times m$$
, $B : m \times l$,
 $AB = A(B_1, \dots, B_l) = (AB_1, \dots, AB_l)$ has columns in $C(A)$.
Right multiply: cols
 $AB = \begin{pmatrix} a_1^T \\ \vdots \\ a_n^T \end{pmatrix} B = \begin{pmatrix} a_1^T B \\ \vdots \\ a_n^T B \end{pmatrix}$ has rows in $\mathcal{R}(B) = C(B^T)$.

Left multiply: rows!

▶ A set of vectors $A_1, ..., A_m \in \mathbb{R}^n$ are linearly independent if

$$\alpha_1 A_1 + \cdots + \alpha_m A_m = 0 \iff \alpha = \mathbf{0}.$$

 $rank(A) := rank(A_1, ..., A_m) := maximal \# of linearly independent vectors$ $rank(AB) \le min(rank A, rank B) (why?)$

Matrix multiplication, rank

Take B to be k linearly independent cols of A...

Orthogonal matrix

Definition $A \in \mathbb{R}^{n \times n}$ is orthogonal if A has orthonormal columns, i.e.,

$$\langle A_i, A_j \rangle = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

A is orthogonal
$$\iff A^{\mathsf{T}}A = I_n$$

 \iff A has orthonormal rows

(why?)

(Need A be symmetric?)

Inverse of a matrix

Definition For $A \in \mathbb{R}^{n \times n}$, A is invertible if there is $B \in \mathbb{R}^{n \times n}$ such that

 $AB = I_n$

Eigendecomposition of a real, symmetric matrix

 $A \in \mathbb{R}^{n \times n}$ has eigenvalue λ with eigenvector $x \in \mathbb{R}^n$ if

$$Ax = \lambda x, \quad x \neq \mathbf{0}.$$

If A is **symmetric**, it must admit

$$(\lambda_1, u_1), (\lambda_2, u_2), \ldots, (\lambda_n, u_n)$$

with $Au_i = \lambda_i u_i$, $\lambda_i \in \mathbb{R}$, $u_i \in \mathbb{R}^n$.

■ Further, $\{u_i\}$ can be chosen such that they are **orthonormal**. (why?) ► For $\lambda_i \neq \lambda_j$, $u_i \perp u_j$; if $\lambda_i = \lambda_j$, orthogonalize.

Eigendecomposition of a real, symmetric matrix

Let $U = (u_1, \dots, u_n)$, then $AU = U \operatorname{diag}(\lambda_1, \dots, \lambda_n),$

so

$$A = U \operatorname{diag}(\lambda_1, \dots, \lambda_n) U^{\mathsf{T}} = \sum_i \lambda_i u_i u_i^{\mathsf{T}}.$$

rank A = \$\sum_i I_{\lambda_i \neq 0}\$
A invertible \$\leftrightarrow \lambda_i \neq 0\$, \$i = 1,..., n\$.
If A is invertible, \$A^{-1} = U \diag(\lambda_1^{-1}, \ldots, \lambda_n^{-1})U^T\$.
Spectral function

$$A^k := \underbrace{A \dots A}_k = U \operatorname{diag}(\lambda_1^k, \dots, \lambda_n^k) U^{\mathsf{T}}.$$

 $\blacktriangleright \operatorname{Tr} A = \sum_i \lambda_i$

Quadratic form

F

A quadratic form in $x \in \mathbb{R}^n$ is

$$\sum_{ij} a_{ij} x_i x_j = x^{\mathsf{T}} A x,$$

where WLOG we can assume $A \in \mathbb{R}^{n \times n}$ is symmetric.

or a symmetric
$$A$$
,
 $A \succeq 0$ (positive semidefinite): $x^{T}Ax \ge 0$ for every x
 $A \succ 0$ (positive definite): $x^{T}Ax > 0$ for every $x \ne 0$

 $\texttt{IS} \{A : A \succeq 0\} \text{ is a cone: For } a, a' > 0, \ aA + a'A' \succeq 0 \text{ if } A, A' \succeq 0.$

Theorem A is psd iff every $\lambda_i(A) \ge 0$; A is pd iff every $\lambda_i(A) > 0$.

• Eigendecomposition $A = U \operatorname{diag}(\lambda_1, \ldots, \lambda_n) U^{\mathsf{T}}$

For $A \succeq 0$, define

$$A^{1/2} := U \operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n}) U^{\intercal}.$$

Rayleigh quotient

Theorem Let $\lambda_1 \ge \cdots \ge \lambda_n$ be the eigenvalues of a real, symmetric matrix A. 1 The optimization problem

$$\max_{x} x^{\mathsf{T}} A x, \text{s.t. } \|x\| = 1$$

has maximum λ_1 , which is achieved by $\pm u_1$.

2 The optimization problem

$$\max_{x} x^{\mathsf{T}} A x, \text{s.t. } \|x\| = 1, \, x \perp u_1$$

has maximum λ_2 , which is achieved by $\pm u_2$.

3 ...

Rayleigh quotient

For a real, symmetric matrix $A \in \mathbb{R}^{n \times n}$ and any $x \neq \mathbf{0}$,

$$\lambda_{\min}(A) \leq rac{x^{\intercal}Ax}{x^{\intercal}x} \leq \lambda_{\max}(A).$$

is All the diagonal elements of A are bounded between λ_{\min} and λ_{\max}

Trace

Trace of a square matrix is the sum of diagonal elements.

1 Tr(AB) = Tr(BA) (why?)

real Useful for changing dimension, e.g., for vectors $v_1, v_2 \in \mathbb{R}^n$,

$$\langle v_1, v_2 \rangle = v_1^{\mathsf{T}} v_2 = \mathsf{Tr}(v_1^{\mathsf{T}} v_2) = \mathsf{Tr}(v_2 v_1^{\mathsf{T}}) = \mathsf{Tr}(v_1 v_2^{\mathsf{T}})$$

2 For a real, symmetric matrix A, $Tr(A) = \sum_i \lambda_i$. (why?)

Projection matrix (important!)

Definition Matrix $H \in \mathbb{R}^{n \times n}$ is a projection matrix if it is (why?) **1** symmetric: $H = H^{T}$ 2 idempotent: $H^2 = H$. i.e., HHx = Hx for any $x \in \mathbb{R}^n$ **Theorem** For a projection matrix H, 1) its eigenvalues are either 0 or 1, (why? 2 rank(H) = Tr(H)

Singular Value Decomposition (SVD)

Any $n \times m$ matrix X can be written as

 $X = UDV^{\mathsf{T}},$

where

- 1 $U: n \times n$, orthogonal
- 2 $V: m \times m$, orthogonal
- **3** $D: n \times m$, 'diagonal': $D_{ii} \ge 0$ for $i \le \min(m, n)$

Full and mini SVDs: Tall matrix

U: $n \times n$, orthogonal: $U^{\mathsf{T}}U = UU^{\mathsf{T}} = I_n$ U_{\min} : $n \times m$ with orthogonal columns: $U_{\min}^{\mathsf{T}}U_{\min} = I_m$ but $U_{\min}U_{\min}^{\mathsf{T}} \neq I_n$

Full and mini SVDs: Wide matrix

V: $m \times m$, orthogonal: $V^{\mathsf{T}}V = VV^{\mathsf{T}} = I_m$ V_{\min} : $n \times m$ with orthogonal columns: $V_{\min}^{\mathsf{T}}V_{\min} = I_n$ but $V_{\min}V_{\min}^{\mathsf{T}} \neq I_m$

Mini SVD: rank-r matrix

Relation to eigendecomposition

Given SVD $X = UDV^{\intercal}$,

 $XX^{\mathsf{T}} = UDV^{\mathsf{T}}VDU^{\mathsf{T}} = UD^{2}U^{\mathsf{T}}$ $X^{\mathsf{T}}X = VDU^{\mathsf{T}}UDV^{\mathsf{T}} = VD^{2}V^{\mathsf{T}}$

- The left singular vectors U of X are eigenvectors of XX^{\intercal}
- The right singular vectors V of X are eigenvectors of $X^{\intercal}X$
- The eigenvalues of $X^{\intercal}X$ and XX^{\intercal} are squares of singular values of X

• When X is symmetric, SVD = eigendecomposition up to signs:

$$X = U \operatorname{diag}(\lambda_1, \dots, \lambda_n) U^{\mathsf{T}} = U \operatorname{diag}(|\lambda_1|, \dots, |\lambda_n|) V^{\mathsf{T}},$$

where $V_i = \operatorname{sign}(\lambda_i)U_i$.

Pseudoinverse

For $n \times m$ matrix A with rank r, its SVD can be written as

 $A = U \operatorname{diag}(d_1, \ldots, d_r) V^{\mathsf{T}},$

from which the pseudoinverse is defined to be the $m \times n$ matrix

 $A^{\dagger} := V \operatorname{diag}(d_1^{-1}, \dots, d_r^{-1}) U^{\intercal}$

In terms of the full SVD

$$A = U egin{pmatrix} D^* & 0 \ 0 & 0 \end{pmatrix} V^\intercal, \quad D^* = \operatorname{diag}(d_1, \ldots, d_r) > 0,$$

we have

$$A^{\dagger} = V egin{pmatrix} D^{*-1} & 0 \ 0 & 0 \end{pmatrix} U^{\intercal},$$

i.e., inverting what can be inverted and leave zeros alone. $A^{\dagger} = A^{-1}$.

▶ When A is invertible,

Vector calculus

For $f : \mathbb{R}^p \to \mathbb{R}$, $\partial f(x) / \partial x = (\partial f(x) / \partial x_1, \dots, \partial f(x) / \partial x_p)^{\mathsf{T}}.$

Hence,

$$\partial a^{\mathsf{T}} x / \partial x = a, \quad \partial x^{\mathsf{T}} A x / \partial x = 2Ax.$$

For $f(x) = (f_1(x), \ldots, f_q(x))^{\intercal} : \mathbb{R}^p \to \mathbb{R}^q$,

$$\partial f(x)/\partial x = (\partial f_1(x)/\partial x, \ldots, \partial f_q(x)/\partial x) \in \mathbb{R}^{p \times q}.$$

Hence, for $x \in \mathbb{R}^p$ and $B \in \mathbb{R}^{q \times p}$,

$$\frac{\partial Bx}{\partial x} = B^{\mathsf{T}}.$$

See Appendix A.2

BIOST/STAT 533, Sp 2024 Theory of Linear Models

Richard Guo

Lecture # 3: OLS with multiple covariates §3
Recall: OLS with a single covariate

▶ Univariate OLS
$$y = \alpha + \beta x$$
:

$$y-ar{y}=\widehat{eta}(x-ar{x}), \quad \widehat{eta}=rac{\widehat{\sigma}_{xy}}{\widehat{\sigma}_x^2}(x-ar{x})=rac{\widehat{
ho}_{xy}\widehat{\sigma}_y}{\widehat{\sigma}_x}(x-ar{x}).$$

• Univariate OLS
$$y = \beta x$$
:

$$\widehat{eta} = rac{\langle x, y
angle}{\langle x, x
angle}.$$

OLS

Find the best fitted line

$$y_i = \widehat{\beta}_1 x_{i1} + \dots + \widehat{\beta}_p x_{i1} = x_i^{\mathsf{T}} \widehat{\beta}$$

for

$$X = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & & \vdots \\ x_{n1} & x_{n2} & \dots & x_{np} \end{pmatrix}, \quad Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}.$$

$$\widehat{\beta} = \arg\min_{b} \sum_{i=1}^{n} (y_i - b^{\mathsf{T}} x_i)^2 = \arg\min_{b} ||Y - Xb||^2.$$

Normal equation

$$\sum_{i} (y_i - x_i^{\mathsf{T}} \widehat{\beta}) x_i = \mathbf{0} \iff X^{\mathsf{T}} (Y - X \widehat{\beta}) = \mathbf{0} \iff X^{\mathsf{T}} Y = X^{\mathsf{T}} X \widehat{\beta}.$$

(why?)

OLS

If $X^{\mathsf{T}}X$ is invertible,

$$\widehat{\beta} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}Y. \implies \widehat{\beta} = \left(\sum_{i} x_{i}x_{i}^{\mathsf{T}}\right)^{-1}\left(\sum_{i} y_{i}x_{i}\right).$$

 $X^\intercal X$ invertible requires that for any $\mathbf{0} \neq a \in \mathbb{R}^p$,

$$a^{\mathsf{T}}(X^{\mathsf{T}}X)a = \|Xa\|^2 \neq 0 \iff Xa \neq 0,$$

i.e., $X = (X_1, \ldots, X_p)$ are linearly independent.

In this course (unless stated otherwise), we assume

Condition Column vectors of X are linearly independent.

 $\implies n \ge p.$

🖙 Fill X with iid normal draws (random design). Then the above is satisfied with prob. 1. (why?)

Geometry

Because $C(X) = \{Xb : b \in \mathbb{R}^p\}$, the least squares finds $\min \|Y - Xb\|^2 \iff \min_{\widehat{Y} \in C(X)} \|Y - \widehat{Y}\|^2,$

where $\widehat{Y} = X\widehat{\beta} = X(X^{\intercal}X)^{-1}X^{\intercal}Y$ is the vector of fitted values.

Geometry

Orthogonal projection Projection matrix / Hat matrix $H = X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}$.

$$Y = HY + (I - H)Y = \widehat{Y} + \widehat{\varepsilon},$$

where the residual vector $\widehat{\varepsilon} = Y - \widehat{Y}$ satisfies

$$\boxed{X^{\mathsf{T}}\widehat{\varepsilon} = \begin{pmatrix} X_1^{\mathsf{T}}\widehat{\varepsilon} \\ \vdots \\ X_p^{\mathsf{T}}\widehat{\varepsilon} \end{pmatrix} = \mathbf{0}}$$

$$\iff X^{\intercal}(Y - X\widehat{\beta}) = \mathbf{0}.$$
 normal equation

Implications

$$1 \hspace{0.1in} \widehat{\varepsilon} \perp v \hspace{0.1in} \text{for any} \hspace{0.1in} v \in \mathcal{C}(X) \hspace{0.1in} \Longleftrightarrow \hspace{0.1in} 0 = \langle Xb, \widehat{\varepsilon} \rangle = b^\intercal X^\intercal \widehat{\varepsilon} \hspace{0.1in} \text{for any} \hspace{0.1in} b \in \mathbb{R}^p.$$

2 If X contains a column of 1's (intercept), then $1^{\intercal} \hat{\varepsilon} = 0$.

Geometry

Pythagorean Theorem

$$\|\boldsymbol{Y}\|^2 = \|\widehat{\boldsymbol{Y}}\|^2 + \|\widehat{\boldsymbol{\varepsilon}}\|^2$$

► OLS is the best fitted line

For any $b \in \mathbb{R}^n$,

$$\|Y - Xb\|^2 = \|Y - X\widehat{\beta}\|^2 + \|X(\widehat{\beta} - b)\|^2$$

and hence

$$\|Y - Xb\|^2 \ge \|Y - X\widehat{\beta}\|^2$$

with equality iff $b = \widehat{\beta}$.

(why?

Projection matrix H

In HW, we have verified that $H = X(X^{T}X)^{-1}X^{T}$ is symmetric and idempotent — indeed, a projection matrix.

► We know

(What are the eigenvalues?)

$$\operatorname{Tr}(H) = \operatorname{rank}(H) = p.$$

Theorem $H = X(X^{T}X)^{-1}X^{T}$ satisfies 1 $Hv = v \iff v \in C(X)$ 2 $Hw = 0 \iff w \perp C(X)$

(why?) (why?)

If X contains a column of 1's, then

$$H\mathbf{1}_n = \mathbf{1}_n \implies$$
 Every row of H sums to 1

Examples

Example *m* treated, *n* controls

$$X = \begin{pmatrix} 1_m & 1_m \\ 1_n & 0_n \end{pmatrix}.$$
$$H = \begin{pmatrix} m^{-1} 1_m 1_m^{\mathsf{T}} & 0 \\ 0 & n^{-1} 1_n 1_n^{\mathsf{T}} \end{pmatrix}$$

Example J treatment levels, level j has n_j units

$$X = \operatorname{diag}(1_{n_1}, \ldots, 1_{n_J})$$

(What is H?)

BIOST/STAT 533, Sp 2024 Theory of Linear Models

Richard Guo

Lecture # 4: Gauss–Markov model and theorem $\S4$

Recall: OLS

• $H = X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}$ is the projection onto $\mathcal{C}(X)$.

Orthogonal decomposition

$$Y = \underbrace{\widehat{Y}}_{HY} + \underbrace{\widehat{\varepsilon}}_{(I_n - H)Y}, \quad \|Y\|^2 = \|\widehat{Y}\| + \|\widehat{\varepsilon}\|^2.$$

► To make sure that $X^{\intercal}X$ is invertible, we shall assume throughout (INF Or equivalently, to make sure that $\widehat{Y} = X\widehat{\beta}$ for a uniquely defined $\widehat{\beta}$)

Assumption $X \in \mathbb{R}^{n \times p}$ has linearly independent columns.

Gauss-Markov model

$$Y = X\beta + \varepsilon,$$

where

1 X is fixed and has linearly independent columns,

2
$$\mathbb{E} \varepsilon = \mathbf{0}$$
, cov $\varepsilon = \sigma^2 I_n$.

The unknown parameters are (β, σ^2) .

- No distributional nor independence assumption on ε only the first two moments of the random vector are concerned.
- X fixed not essential if random, we can condition on X.

(why?)

Mean and covariance of OLS

Under <u>GM</u>, the OLS satisfies

$$\mathbb{E}\,\widehat{\beta}=eta,\quad \operatorname{cov}\widehat{\beta}=\sigma^2(X^{\intercal}X)^{-1}.$$

▶ What if X is not fixed?

Mean and covariance of $(\widehat{Y}, \widehat{\varepsilon})$

▶ Recall that H (onto C(X)) and $I_n - H$ (onto $C(X)^{\perp}$) are both projection matrices satisfying

$$HX = X$$
, $(I - H)X = 0$, $H(I_n - H) = (I_n - H)H = 0$.

With

$$\begin{pmatrix} \widehat{Y} \\ \widehat{\varepsilon} \end{pmatrix} = \begin{pmatrix} H \\ I_n - H \end{pmatrix} Y = \begin{pmatrix} H \\ I_n - H \end{pmatrix} (X\beta + \varepsilon),$$
under GM we have

$$\mathbb{E} \begin{pmatrix} \widehat{Y} \\ \widehat{\varepsilon} \end{pmatrix} = \begin{pmatrix} X\beta \\ 0 \end{pmatrix},$$

$$\operatorname{cov} \begin{pmatrix} \widehat{Y} \\ \widehat{\varepsilon} \end{pmatrix} = \sigma^2 \begin{pmatrix} H & 0 \\ 0 & I_n - H \end{pmatrix}.$$

☞ For any *i*,*j*,

$$\operatorname{cov}(\widehat{Y}_i, \widehat{Y}_j) = \sigma^2 h_{ij}, \quad \operatorname{cov}(\widehat{\varepsilon}_i, \widehat{\varepsilon}_j) = \sigma^2(\mathbb{I}\{i = j\} - h_{ij}), \quad \operatorname{cov}(Y_i, \widehat{\varepsilon}_j) = 0.$$

It is natural to estimate σ^2 based on the residual sum of squares

We have

$$\mathbb{E} \operatorname{RSS} = \mathbb{E} \sum_{i=1}^{n} \widehat{\varepsilon}_{i}^{2} = \sigma^{2} \sum_{i} (1 - h_{ii}) = \sigma^{2} (n - \operatorname{Tr}(H)) = \sigma^{2} (n - p) \quad (why?)$$

Theorem $\hat{\sigma}^2 := \text{RSS}/(n-p)$ is an unbiased estimator of σ^2 under <u>GM</u>.

Gauss–Markov theorem

- ▶ Question unanswered so far why should we focus on OLS?
- The next theorem establishes that OLS $\hat{\beta}$ is the Best Linear Unbiased Estimator (BLUE) for β under <u>GM</u>.

■ Recall that ' \succeq ' is positive semidefinite order. For real, symmetric A, B,

$$A \succeq B \iff A - B \succeq \mathbf{0} \iff c^{\mathsf{T}}(A - B)c \ge 0$$
 for every c .

▶ Natural notion for comparing covariances.

Gauss–Markov Theorem. Under <u>GM</u>, let $\tilde{\beta}$ be any linear, unbiased estimator of β in the sense that

1)
$$\widetilde{\beta} = AY$$
 for some $A \in \mathbb{R}^{p \times n}$ that does not depend on Y ,

(linear in what?)

2
$$\mathbb{E}\widetilde{\beta} = \beta$$
 for every β .

Then the OLS $\widehat{\beta}$ satisfies

$$\operatorname{cov}\widetilde{\beta}\succeq\operatorname{cov}\widehat{\beta}.$$

 $\blacktriangleright \implies \operatorname{var} \widetilde{\beta}_j \ge \operatorname{var} \widehat{\beta}_j \text{ (why?)}$

Proof.

1 OLS is linear,

2 unbiased.

3 Covariance comparison.

BLUE, necessarily good?

1 OLS is BLUE under <u>GM</u>, which is a restrictive model. In particular, it assumes homoskedasticity var $\varepsilon_i^2 \equiv \sigma^2$. \blacktriangleright homo-skedastikos (Greek, disperse)

Under heteroskedasticity $cov(\varepsilon) = \Sigma$, it makes more sense to weigh observations inverse proportionally to Σ :

Generalized least squares (GLS): $\widehat{\beta}_{\Sigma} = (X^{\mathsf{T}} \Sigma^{-1} X)^{-1} X^{\mathsf{T}} \Sigma^{-1} Y$.

► GLS is also linear and unbiased.

2 Unbiased estimator is important in classic statistics (e.g., U-stat).In terms of estimation error, it can be worse than a biased estimator when p is large.

(why?)

Gauss-Markov-Normal model Pivotal inference

BIOST/STAT 533, Sp 2024 Theory of Linear Models

Richard Guo

Lecture # 5: Normal linear model: inference and prediction §5, Appendix B

Recall: Gauss-Markov model

<u>GM</u> The data generating process obeys

$$Y = X\beta + \varepsilon,$$

where

1 X is fixed and has linearly independent columns,

2
$$\mathbb{E} \varepsilon = \mathbf{0}$$
, cov $\varepsilon = \sigma^2 I_n$.

The unknown parameters are (β, σ^2) .

Theorem Under <u>GM</u>, OLS is **BLUE**.

Gauss-Markov-Normal model

<u>**GM**- \mathcal{N} </u> The data generating process obeys

$$Y = X\beta + \varepsilon,$$

where

1 X is fixed and has linearly independent columns,

2
$$\varepsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 I_n).$$

The unknown parameters are (β, σ^2) .

🖙 Or equivalently,

$$Y \sim \mathcal{N}(X\beta, \sigma^2 I_n).$$

Distributions, finite sample

Under GM-N,

$$\begin{pmatrix} \widehat{\beta} \\ \widehat{\varepsilon} \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} \beta \\ \mathbf{0} \end{pmatrix}, \sigma^2 \begin{pmatrix} (X^{\mathsf{T}}X)^{-1} & \mathbf{0} \\ \mathbf{0} & I_n - H \end{pmatrix} \right),$$
and with $\widehat{\sigma}^2 = \|\widehat{\varepsilon}\|^2 / (n-p),$
 $\widehat{\sigma}^2 / \sigma^2 \sim \chi^2_{n-p} / (n-p).$
It holds that
 $\widehat{\beta} \perp \widehat{\varepsilon}, \quad \widehat{\beta} \perp \widehat{\sigma}^2$
 $\blacktriangleright \widehat{\sigma}^2$ is unbiased (why?)

Distributions, finite sample

Under GM-N,
$$\begin{pmatrix} \widehat{Y} \\ \widehat{\varepsilon} \end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix} X\beta \\ \mathbf{0} \end{pmatrix}, \sigma^2 \begin{pmatrix} H & 0 \\ 0 & I_n - H \end{pmatrix} \right).$$

Gauss-Markov-Normal model Pivotal inference

Inference for scalar $c^{\intercal}\beta$

▶ **Pivot**: A real-valued quantity *f*(statistic, unknown) (called a 'root') whose distribution is known — a bridge for inference.

$$c^{\mathsf{T}}\widehat{eta} \sim \mathcal{N}(c^{\mathsf{T}}eta, \sigma^2 c^{\mathsf{T}}(X^{\mathsf{T}}X)^{-1}c)$$

Pivot for $c^{\mathsf{T}}\beta$. Under <u>GM-N</u>, $T_c := \frac{c^{\mathsf{T}}\widehat{\beta} - c^{\mathsf{T}}\beta}{\sqrt{\widehat{\sigma}^2 c^{\mathsf{T}} (X^{\mathsf{T}}X)^{-1}c}} \sim t_{n-p}.$

Finite-sample CI can be constructed from

$$\mathbb{P}\{|T_c| \le t_{1-\alpha/2,n-p}\} = 1-\alpha.$$

Quadratic forms of MVN

Theorem B.10

1 If $Y \sim \mathcal{N}(\mu, \Sigma)$,

$$(Y - \mu)^{\mathsf{T}} \Sigma^{\dagger} (Y - \mu) \sim \chi_k^2, \quad k = \mathsf{rank}(\Sigma)$$

2 If $Y \sim \mathcal{N}(0, I_n)$ and H is a projection matrix of rank k, then

$$Y^{\mathsf{T}}HY \sim \chi_k^2.$$

3 If $Y \sim \mathcal{N}(0, H)$ and H is a projection matrix of rank k, then

$$Y^{\mathsf{T}}Y \sim \chi_k^2.$$

Inference for vector $C\beta$

▶ For $C : I \times p$, consider inferring $C\beta \in \mathbb{R}^p$.

$$C(\widehat{\beta} - \beta) \sim \mathcal{N}(\mathbf{0}, \sigma^2 C(X^{\mathsf{T}}X)^{-1}C^{\mathsf{T}})$$

R

$$(C\widehat{\beta} - C\beta)^{\mathsf{T}} \{\sigma^2 C(X^{\mathsf{T}}X)^{-1}C^{\mathsf{T}}\}^{-1} (C\widehat{\beta} - C\beta) \sim \chi_I^2,$$

if we assume C has linearly independent rows.

(why?)

Pivot for $C\beta$. Suppose $C \in \mathbb{R}^{l \times p}$ has linearly independent rows. Under <u>GM-N</u>, $F_C := \frac{(C\hat{\beta} - C\beta)^{\mathsf{T}} \{C(X^{\mathsf{T}}X)^{-1}C^{\mathsf{T}}\}^{-1}(C\hat{\beta} - C\beta)}{l\hat{\sigma}^2} \sim F_{l,n-p}.$

Quadratic forms of random vectors

Theorem B.8 If a random vector Y has mean μ and covariance Σ , then

 $\mathbb{E} Y^{\mathsf{T}} A Y = \mathsf{Tr}(A \Sigma) + \mu^{\mathsf{T}} A \mu.$

Related distributions

$$Ga(k/2, 1/2) =_d \chi_k^2 = \underbrace{N(0, 1)^2 + \dots + N(0, 1)^2}_{k \text{ times}}$$
$$t_k = \frac{N(0, 1)}{\sqrt{\chi_k^2/k}}$$
$$F_{k,l} = \frac{\chi_k^2/k}{\chi_l^2/l},$$
so $t_l^2 = F_{1,l}$

with appropriate independence between relevant random variables.

Prediction

Want to get a prediction interval on a new observation

$$y_{n+1} = x_{n+1}^{\mathsf{T}}\beta + \varepsilon_{n+1}, \quad \varepsilon_{n+1} \sim \mathcal{N}(0, \sigma^2).$$

Theorem Under $\underline{GM-N}$, we have the following pivot for prediction:

$$\frac{y_{n+1}-x_{n+1}^{\mathsf{T}}\widehat{\beta}}{\sqrt{\widehat{\sigma}^2+\widehat{\sigma}^2x_{n+1}^{\mathsf{T}}(X^{\mathsf{T}}X)^{-1}x_{n+1}}}\sim t_{n-p}.$$

Gauss-Markov-Normal model Pivotal inference

Galton data: confidence inteval vs prediction interval

midparentHeight

R/week-2-Galton.R 12/12

BIOST/STAT 533, Sp 2024 Theory of Linear Models

Richard Guo

Lecture # 6: Asymptotic inference of OLS: heteroskedastic errors §6, Appendix C.2

Recall: finite-sample inference under Normal linear model

<u>GM-\mathcal{N}</u> The data generating process obeys

$$Y = X\beta + \varepsilon,$$

where

1 X is fixed and has linearly independent columns,

2
$$\varepsilon \sim \mathcal{N}(0, \sigma^2 I_n).$$

.e.,
$$\varepsilon_i \stackrel{\mathsf{iid}}{\sim} \mathcal{N}(0, \sigma^2)$$

The unknown parameters are (β, σ^2) .

$$\widehat{\beta} - \beta \sim \mathcal{N}(0, \sigma^2(X^{\mathsf{T}}X)^{-1}) \quad \mathbb{L} \quad \widehat{\sigma}^2/\sigma^2 \sim \chi^2_{n-p}/(n-p).$$

 \blacktriangleright Constructing *t* or *F* pivots

• Efficiency: OLS $\hat{\beta}$ is MLE and **BLUE**

Heteroskedastic linear model

Hetero The data generating process obeys

$$Y = X\beta + \varepsilon, \quad \varepsilon = (\varepsilon_1, \ldots, \varepsilon_n)^{\mathsf{T}},$$

where

1 X is fixed and has linearly independent columns,

2 ε_i 's are independent with $\mathbb{E} \varepsilon_i = 0$, var $\varepsilon_i = \sigma_i^2$

The unknown parameters are $(\beta, \sigma_1^2, \ldots, \sigma_n^2)$.

The errors might not be normal (though still cannot be arbitrary).
 Compared to <u>GM</u>, the errors are independent (though not iid).

(whv?)

Heteroskedastic linear model: a simulation

R/HuberWhite.R

Heteroskedastic linear model: a simulation

R/HuberWhite.R

OLS: asymptotic expansion

<u>Hetero</u> The data generating process obeys $Y = X\beta + \varepsilon$, $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n)^T$, where

- 1 X is fixed and has linearly independent columns,
- **2** ε_i 's are independent with $\mathbb{E} \varepsilon_i = 0$, var $\varepsilon_i = \sigma_i^2$

The unknown parameters are $(\beta, \sigma_1^2, \ldots, \sigma_n^2)$.

Lemma Under <u>Hetero</u>, we have $\widehat{\beta} - \beta = B_n^{-1} \xi_n$ with

$$B_n = n^{-1} \sum_{i=1}^n x_i x_i^{\mathsf{T}}, \quad \xi_n = n^{-1} \sum_{i=1}^n x_i \varepsilon_i$$

 $\mathbb{E} \widehat{\beta} = \beta$ (why?)

when *n* is large,
$$\hat{\beta} - \beta \approx B^{-1}\xi_n = B^{-1}(\underbrace{n^{-1}\sum_i x_i\varepsilon_i}_{i}).$$

avg of ind terms

OLS: consistency

Assumption 1. We have $B_n := n^{-1} \sum_{i=1}^n x_i x_i^{\mathsf{T}} \to B, \quad M_n := n^{-1} \sum_{i=1}^n \sigma_i^2 x_i x_i^{\mathsf{T}} \to M,$ where *B* is invertible.

Theorem Under <u>Hetero</u> and Assumption 1, $\hat{\beta}$ is consistent for β .
OLS: asymptotic normality

Assumption 1 (good limits). $B_n \rightarrow B$, $M_n \rightarrow M$, where B is invertible.

Assumption 2 (moment condition). For some $\delta > 0$ and C > 0, it holds that

$$d_{2+\delta,n}:=n^{-1}\sum_{i=1}^n \|x_i\|^{2+\delta}\,\mathbb{E}\,|arepsilon_i|^{2+\delta} < C \quad ext{for all } n.$$

Theorem Consider <u>Hetero</u> model. Under Assumption 1 and 2, we have

$$\sqrt{n}(\widehat{\beta}-\beta) \rightarrow_{d} \mathcal{N}(\mathbf{0}, B^{-1}MB^{-1}).$$

Approximately,

$$\widehat{eta} - eta \stackrel{\mathsf{a}}{\sim} \mathcal{N}(\mathbf{0}, n^{-1}B^{-1}MB^{-1}),$$

where $n^{-1}B^{-1}MB^{-1}$ is the standard error of $\hat{\beta}$.

Lindeberg-Feller CLT

▶ Triangular array $(Z_{n,1}, \ldots, Z_{n,k_n})$ with $k_n \to \infty$ as $n \to \infty$, e.g.,

Theorem For each *n*, let $Z_{n,1}, \ldots, Z_{n,k_n}$ be independent random variables with finite variances such that

$$\begin{array}{l} (\mathsf{LF-1}) \quad \sum_{i=1}^{k_n} \mathbb{E}\left[\|Z_{n,i}\|^2 \, \mathbb{I}\{\|Z_{n,i}\| > c\} \right] \to 0 \text{ for every } c > 0, \\ (\mathsf{LF-2}) \quad \sum_{i=1}^{k_n} \operatorname{cov} Z_{n,i} \to \Sigma. \end{array} \\ \\ \text{Then, } \sum_{i=1}^{k_n} (Z_{n,i} - \mathbb{E} \, Z_{n,i}) \to_d \mathcal{N}(\mathbf{0}, \Sigma). \text{ The result still holds if (LF-1) is replaced by} \\ (\mathsf{LF-1'}) \quad \sum_{i=1}^{k_n} \mathbb{E} \, \|Z_{n,i}\|^{2+\delta} \to 0 \text{ for some } \delta > 0. \end{array}$$

See also Theorem 2.2 in Shorack (2017), Probability for Statisticians. 9/9

Eicker-Huber-White

BIOST/STAT 533, Sp 2024 Theory of Linear Models

Richard Guo

Lecture # 7: Asymptotic inference of OLS: Eicker–Huber–White $\S{6.4-6.5}$

Eicker-Huber-White

Recall: ASN under heteroskedastic errors

<u>Hetero</u> The data generating process obeys $Y = X\beta + \varepsilon$, $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n)^T$, where

- 1 X is fixed and has linearly independent columns,
- **2** ε_i 's are independent with $\mathbb{E} \varepsilon_i = 0$, var $\varepsilon_i = \sigma_i^2$

The unknown parameters are $(\beta, \sigma_1^2, \ldots, \sigma_n^2)$.

Is OLS still BLUE? (why?)

Theorem Consider <u>Hetero</u> model. Under

(A1) (good limits)
$$B_n := n^{-1} \sum_{i=1}^n x_i x_i^{\mathsf{T}} \to B$$
 (full rank), $M_n := n^{-1} \sum_{i=1}^n \sigma_i^2 x_i x_i^{\mathsf{T}} \to M$
(A2) (moment condition) $d_{2+\delta,n} := n^{-1} \sum_{i=1}^n ||x_i||^{2+\delta} \mathbb{E} |\varepsilon_i|^{2+\delta} < C$ for $\delta > 0, C > 0,$
 $\sqrt{n}(\widehat{\beta} - \beta) \to_d \mathcal{N}(\mathbf{0}, B^{-1}MB^{-1}).$

Estimating asymptotic covariance

The asymptotic covariance

$$\Sigma = B^{-1} M B^{-1}.$$

▶ *B* is the limit of B_n and can be naturally estimated by $B_n = n^{-1}X^{\mathsf{T}}X$.

► For $M = n^{-1} \sum_{i} \sigma_{i}^{2} x_{i} x_{i}^{\mathsf{T}} = n^{-1} X^{\mathsf{T}} \operatorname{diag}(\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}) X$, an ideal (but infeasible) estimator is

$$\widetilde{M}_n := n^{-1} \sum_i \varepsilon_i^2 x_i x_i^{\mathsf{T}}$$

unbiased (why?)

Replace it with

$$\widehat{M}_n := n^{-1} \sum_i \widehat{\varepsilon}_i^2 x_i x_i^{\mathsf{T}}.$$

Recall: $\hat{\varepsilon} = (I - H)Y$ To show its consistency, suffices to show $\widetilde{M}_n \to M$ and $\widehat{M}_n - \widetilde{M}_n \to_p \mathbf{0}$. (why?)

Consistency of \widehat{M}_n

Theorem Consider <u>Hetero</u> model. Suppose it holds that

(A1) (good limits)
$$B_n := n^{-1} \sum_{i=1}^n x_i x_i^{\mathsf{T}} \to B$$
 (full rank), $M_n := n^{-1} \sum_{i=1}^n \sigma_i^2 x_i x_i^{\mathsf{T}} \to M$.

We have $\widehat{M}_n \rightarrow_p M$ if the following (A3) (extra moment condition) holds:

$$n^{-1}\sum_{i} \operatorname{var}(\varepsilon_{i}^{2}) x_{i,j_{1}}^{2} x_{i,j_{2}}^{2}, \quad n^{-1}\sum_{i} |x_{i,j_{1}} x_{i,j_{2}} x_{i,j_{3}} x_{i,j_{4}}|, \quad n^{-2}\sum_{i} \sigma_{i}^{2} x_{i,j_{1}}^{2} x_{i,j_{2}}^{2} x_{i,j_{3}}^{2}$$

are bounded above by some constant C for all n and every $j_1, j_2, j_3, j_4 \in \{1, \dots, p\}$.

🔊 Then,

$$\widehat{\Sigma}_{\mathsf{EHW}} := B_n^{-1} \widehat{M}_n B_n^{-1} \to_p \Sigma = B^{-1} M B^{-1}.$$

Eicker-Huber-White

Consistency of \widehat{M}_n

Proof.

$$\widehat{M}_n - M = \widetilde{M}_n - M + \widehat{M}_n - \widetilde{M}_n$$

1
$$\widetilde{M}_n \to_p M$$
.
2 $\widehat{M}_n - \widetilde{M}_n \to_p 0$.

Eicker-Huber-White

Consistent estimator of asymptotic covariance

$$\widehat{\Sigma}_{\mathsf{EHW}} = \left(\underbrace{\overbrace{n^{-1}\sum_{i}x_{i}x_{i}^{\mathsf{T}}}^{B_{n}}}_{i} \right)^{-1} \left(\underbrace{\overbrace{n^{-1}\sum_{i}\widehat{\varepsilon}_{i}^{2}x_{i}x_{i}^{\mathsf{T}}}^{\widehat{M}_{n}}}_{i} \right) \left(\underbrace{\overbrace{n^{-1}\sum_{i}x_{i}x_{i}^{\mathsf{T}}}^{B_{n}}}_{i} \right)^{-1}$$
$$= n \underbrace{(X^{\mathsf{T}}X)^{-1}(X^{\mathsf{T}}\widehat{\Omega}X)(X^{\mathsf{T}}X)^{-1}}_{\widehat{V}_{\mathsf{EHW}}}, \qquad \widehat{\Omega} = \mathsf{diag}(\widehat{\varepsilon}_{1}^{2}, \dots, \widehat{\varepsilon}_{n}^{2}).$$

► Convergence in distribution: $\widehat{\Sigma}_{\mathsf{EHW}}^{-1/2}\sqrt{n}(\widehat{\beta}-\beta) \rightarrow_d \mathcal{N}(0, I_p).$

(why?)

Approximately,

 $\widehat{\boldsymbol{\beta}} \stackrel{\text{a}}{\sim} \mathcal{N}(\boldsymbol{\beta}, \widehat{V}_{\text{EHW}}).$

 $\sim \hat{V}_{\text{EHW}}$ yields robust/sandwich or HC (heteroskedasticity-consistent) standard errors:

$$\widehat{\operatorname{SE}}_{\mathsf{EHW}}(eta_j) = \sqrt{(\widehat{\mathcal{V}}_{\mathsf{EHW}})_{j,j}}, \quad j=1,\ldots,p.$$

Eicker-Huber-White: HC variants

$$\widehat{\Sigma}_{\mathsf{EHW},k}/n = \widehat{V}_{\mathsf{EHW},k} = (X^\intercal X)^{-1} \, \left(X^\intercal \operatorname{\mathsf{diag}}(\widehat{\varepsilon}^2_{1,k},\ldots,\widehat{\varepsilon}^2_{n,k}) X \right) \, (X^\intercal X)^{-1},$$

with

$$\widehat{\varepsilon}_{i,k} = \begin{cases} \widehat{\varepsilon}_{i}, \\ \widehat{\varepsilon}_{i}\sqrt{n/(n-p)}, \\ \widehat{\varepsilon}_{i}/\sqrt{1-h_{ii}}, \\ \widehat{\varepsilon}_{i}/(1-h_{ii}), \\ \widehat{\varepsilon}_{i}/(1-h_{ii})^{\min\{2,nh_{ii}/(2p)\}}, \end{cases}$$

HC0	► vanilla
HC1	d.o.f. correction
HC2	 unbiased under homoskedasticity
HC3	► jackknife
HC4	

I For practice, maybe consider HC2 or HC3.

Eicker-Huber-White

Special case: homoskedastic

► When
$$\sigma_1^2 = \cdots = \sigma_n^2 = \sigma^2$$
,
 $\sqrt{n}(\widehat{\beta} - \beta) \rightarrow_d \mathcal{N}(0, B^{-1}MB^{-1}) = \mathcal{N}(0, \sigma^2 B^{-1})$

(why?)

Theorem Consider <u>Hetero</u> model. Suppose it holds that

(A1) (good limits)
$$B_n := n^{-1} \sum_{i=1}^n x_i x_i^\mathsf{T} \to B$$
 (full rank), $M_n := n^{-1} \sum_{i=1}^n \sigma_i^2 x_i x_i^\mathsf{T} \to M$.

Further, if

$$\sigma_1^2 = \cdots = \sigma_n^2 = \sigma^2$$
 and $n^{-1} \sum_i \operatorname{var}(\varepsilon_i^2)$ is bounded,

then

 $\widehat{\sigma}^2 := \operatorname{RSS}/(n-p) \to_p \sigma^2.$ We already know that $\widehat{\sigma}^2$ is unbiased. (why?)

Eicker-Huber-White

Review: models

BIOST/STAT 533, Sp 2024 Theory of Linear Models

Richard Guo

Lecture # 8: Partial regression and Frisch–Waugh–Lovell Theorem $\c{g7}$

Recall: ASN under heteroskedastic errors

<u>Hetero</u> The data generating process obeys $Y = X\beta + \varepsilon$, $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n)^{\mathsf{T}}$, where 1 X is fixed and has linearly independent columns, 2 ε_i 's are independent with $\mathbb{E} \varepsilon_i = 0$, var $\varepsilon_i = \sigma_i^2$ The unknown parameters are $(\beta, \sigma_1^2, \ldots, \sigma_n^2)$. Is OLS still **BLUE**? (why?) Theorem Consider Hetero model. Under (A1) (good limits) $B_n := n^{-1} \sum_{i=1}^{n} x_i x_i^{\mathsf{T}} \to B$ (full rank), $M_n := n^{-1} \sum_{i=1}^{n} \sigma_i^2 x_i x_i^{\mathsf{T}} \to M$ $({\sf A2}) \ ({\sf moment \ condition}) \quad d_{2+\delta,n} := n^{-1}\sum_{i=1}^{\infty} \|x_i\|^{2+\delta} \ \mathbb{E} \left|\varepsilon_i\right|^{2+\delta} < C \quad {\sf for} \ \delta > 0, \ C > 0,$ $\sqrt{n}(\widehat{\beta} - \beta) \rightarrow_d \mathcal{N}(\mathbf{0}, B^{-1}MB^{-1}).$

Recall: Consistency of $\widehat{\Sigma}_{\text{EHW}}$

$$\begin{split} \widehat{\Sigma}_{\mathsf{EHW}} &= B_n^{-1} \widehat{M_n} B_n^{-1} \\ &= \left(n^{-1} \sum_i x_i x_i^{\mathsf{T}} \right)^{-1} \left(n^{-1} \sum_i \widehat{\varepsilon}_i^2 x_i x_i^{\mathsf{T}} \right) \left(n^{-1} \sum_i x_i x_i^{\mathsf{T}} \right)^{-1} \\ &= n \underbrace{(X^{\mathsf{T}} X)^{-1} (X^{\mathsf{T}} \widehat{\Omega} X) (X^{\mathsf{T}} X)^{-1}}_{\widehat{V}_{\mathsf{EHW}}}, \qquad \widehat{\Omega} = \mathsf{diag}(\widehat{\varepsilon}_1^2, \dots, \widehat{\varepsilon}_n^2). \end{split}$$

We have $\widehat{\Sigma}_{\text{EHW}} \rightarrow_p \Sigma = B^{-1}MB^{-1}$ under (A1) (good limits) and (A3) (extra moment conditions):

$$n^{-1}\sum_{i} \operatorname{var}(\varepsilon_{i}^{2}) x_{i,j_{1}}^{2} x_{i,j_{2}}^{2} \leq C, \quad n^{-1}\sum_{i} |x_{i,j_{1}} x_{i,j_{2}} x_{i,j_{3}} x_{i,j_{4}}| \leq C, \quad n^{-2}\sum_{i} \sigma_{i}^{2} x_{i,j_{1}}^{2} x_{i,j_{2}}^{2} x_{i,j_{3}}^{2} \leq C.$$

Long and short regressions

Suppose X : $n \times (k + l)$ has linearly independent columns. Partition X and β into

$$X = (\underbrace{X_1}_{n \times k}, \underbrace{X_2}_{n \times l}), \quad \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}.$$

Long regression $Y \sim X_1 + X_2$

$$Y = X\widehat{\beta} + \widehat{\varepsilon}$$
$$= X_1\widehat{\beta}_1 + X_2\widehat{\beta}_2 + \widehat{\varepsilon}.$$

Short regression $Y \sim X_2$

$$Y = X_2 \widetilde{\beta}_2 + \widetilde{\varepsilon}.$$

FWL theorem

Short regression
$$Y = \underbrace{X_2}_{n \times l} \widetilde{\beta}_2 + \widetilde{\varepsilon}$$
:
 $\widetilde{\beta}_2 = (X_2^{\mathsf{T}} X_2)^{-1} X_2^{\mathsf{T}} Y.$
Long regression $Y = \underbrace{X_1}_{n \times k} \widehat{\beta}_1 + \underbrace{X_2}_{n \times l} \widehat{\beta}_2 + \widehat{\varepsilon}$

Frisch–Waugh–Lovell Theorem Suppose X has linearly independent columns. In the long regression, the OLS for β_2 has the following equivalent forms:

$$\begin{aligned} \widehat{\beta}_2 &= [(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}Y]_{(k+1):(k+l)} \\ &= \{X_2^{\mathsf{T}}(I_n - H_1)X_2\}^{-1}X_2^{\mathsf{T}}(I_n - H_1)Y, \quad \text{where } H_1 = X_1(X_1^{\mathsf{T}}X_1)^{-1}X_1^{\mathsf{T}} \\ &= (\widetilde{X}_2^{\mathsf{T}}\widetilde{X}_2)^{-1}\widetilde{X}_2^{\mathsf{T}}Y, \quad \text{where } \widetilde{X}_2 = (I_n - H_1)X_2 \\ &= (\widetilde{X}_2^{\mathsf{T}}\widetilde{X}_2)^{-1}\widetilde{X}_2^{\mathsf{T}}\widetilde{Y}, \quad \text{where } \widetilde{Y} = (I_n - H_1)Y. \end{aligned}$$

FWL theorem

Frisch–Waugh–Lovell Theorem Suppose X has linearly independent columns. In the long regression, the OLS for β_2 has the following equivalent forms:

$$\begin{aligned} \widehat{\beta}_2 &= [(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}Y]_{(k+1):(k+l)} \\ &= \{X_2^{\mathsf{T}}(I_n - H_1)X_2\}^{-1}X_2^{\mathsf{T}}(I_n - H_1)Y, \quad \text{where } H_1 = X_1(X_1^{\mathsf{T}}X_1)^{-1}X_1^{\mathsf{T}} \\ &= (\widetilde{X}_2^{\mathsf{T}}\widetilde{X}_2)^{-1}\widetilde{X}_2^{\mathsf{T}}Y, \quad \text{where } \widetilde{X}_2 = (I_n - H_1)X_2 \\ &= (\widetilde{X}_2^{\mathsf{T}}\widetilde{X}_2)^{-1}\widetilde{X}_2^{\mathsf{T}}\widetilde{Y}, \quad \text{where } \widetilde{Y} = (I_n - H_1)Y. \end{aligned}$$

- $\blacktriangleright X_2$ is the residual matrix from columnwise OLS fit of X_2 on X_1 .
- $\blacktriangleright \widetilde{Y}$ is the residual from OLS fit of Y on X_2 .
- \triangleright $\hat{\beta}_2$ is the OLS from $\tilde{Y} \sim \tilde{X}_2$ (partial regression)
- ▶ $\hat{\beta}_2$ is also the OLS from $Y \sim \tilde{X}_2$ (no need to residualize Y).

 \mathbb{I} That is, short regression but with X_2 replaced by \widetilde{X}_2

Proof I: using inverse of 2×2 block matrix

Recall from HW 3,

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} + A^{-1}B\widetilde{D}^{-1}CA^{-1} & -A^{-1}B\widetilde{D}^{-1} \\ -\widetilde{D}^{-1}CA^{-1} & \widetilde{D}^{-1} \end{pmatrix},$$

where $\widetilde{D} = D - CA^{-1}B$ is the Schur complement of A.

Proof II: using orthogonality

Properties

Lemma Let $\widetilde{H}_2:=\widetilde{X}_2(\widetilde{X}_2^{\intercal}\widetilde{X}_2)^{-1}\widetilde{X}_2^{\intercal}.$ We have $H_1\widetilde{H}_2=\widetilde{H}_2H_1=0,\quad H=H_1+\widetilde{H}_2.$

 $\blacksquare H \neq H_1 + H_2$ in general!

Corollary Long regression $Y \sim X$ and the partial regression $\widetilde{Y} \sim \widetilde{X}_2$ have the same residuals.

Corollary (under orthogonality) When $X_1^T X_2 = 0$, i.e., $C(X_1) \perp C(X_2)$, we have $\widetilde{X}_2 = X_2$, $\widehat{\beta}_2$ from $Y \sim X_1 + X_2 = \widetilde{\beta}_2$ from $Y \sim X_2$.

Gram–Schmidt

▶ Projection of $V_2 \in \mathbb{R}^n$ on $V_1 \in \mathbb{R}^n$:

$$\widehat{\beta}_{V_2|V_1}V_1 = \underbrace{V_1(V_1^{\mathsf{T}}V_1)^{-1}V_1^{\mathsf{T}}}_{H_{V_1}}V_2$$

Gram–Schmidt orthogonalization: Sequentially orthogonalize $X = (X_1, ..., X_p)$ to orthogonal vectors $(U_1, ..., U_p)$ such that $C(U_1, ..., U_m) = C(X_1, ..., X_m)$ for m = 1, ..., p.

1
$$X_1 = U_1$$

2 $X_2 = \hat{\beta}_{X_2|U_1}U_1 + U_2$
3 $X_3 = \hat{\beta}_{X_3|U_1}U_1 + \hat{\beta}_{X_3|U_2}U_2 + U_3$
 \vdots
 $C(X_1, X_2, X_3) = C(U_1, U_2, U_3) \text{ (why?)}$
 $X_p = \sum_{i=1}^{p-1} \hat{\beta}_{p|U_i}U_j + U_p.$

QR decomposition

Normalization

$$Q_j = U_j/\|U_j\|, \quad j = 1,\ldots,p.$$

QR decomposition

$$\begin{aligned} X &= (X_1, \dots, X_p) \\ &= (U_1, \dots, U_p) \begin{pmatrix} 1 & \widehat{\beta}_{X_2|U_1} & \widehat{\beta}_{X_3|U_1} & \dots & \widehat{\beta}_{X_p|U_1} \\ 0 & 1 & \widehat{\beta}_{X_3|U_2} & \dots & \widehat{\beta}_{X_p|U_2} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix} \\ &= Q \operatorname{diag}(\|U_1\|, \dots, \|U_p\|) \begin{pmatrix} 1 & \widehat{\beta}_{X_2|U_1} & \widehat{\beta}_{X_3|U_1} & \dots & \widehat{\beta}_{X_p|U_1} \\ 0 & 1 & \widehat{\beta}_{X_3|U_2} & \dots & \widehat{\beta}_{X_p|U_2} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix} \\ &= Q R. \end{aligned}$$

Solving OLS

▶ Instead of inverting $X^{\intercal}X$ (numerically unstable), R solves OLS using X = QR:

$$X^{\mathsf{T}} X \widehat{\beta} = X^{\mathsf{T}} Y$$
$$R^{\mathsf{T}} Q^{\mathsf{T}} Q R \widehat{\beta} = R^{\mathsf{T}} Q^{\mathsf{T}} Y$$
$$R^{\mathsf{T}} R \widehat{\beta} = R^{\mathsf{T}} Q^{\mathsf{T}} Y$$
$$R \widehat{\beta} = Q^{\mathsf{T}} Y,$$

then backsolves $\hat{\beta}$.

Applications of FWL Midterm review

BIOST/STAT 533, Sp 2024 Theory of Linear Models

Richard Guo

Lecture # 9: Applications of FWL; ANOVA and Wald; Midterm Review $\S{8}$

Recall: FWL theorem

Short regression
$$Y = \underbrace{X_2}_{n \times l} \widetilde{\beta}_2 + \widetilde{\varepsilon}$$

Long regression $Y = \underbrace{X_1}_{n \times k} \widehat{\beta}_1 + \underbrace{X_2}_{n \times l} \widehat{\beta}_2 + \widehat{\varepsilon}$

Frisch–Waugh–Lovell Theorem Suppose X has linearly independent columns. In the long regression, the OLS for β_2 has the following equivalent forms:

$$\begin{aligned} \widehat{\beta}_2 &= [(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}Y]_{(k+1):(k+l)} \\ &= \{X_2^{\mathsf{T}}(I_n - H_1)X_2\}^{-1}X_2^{\mathsf{T}}(I_n - H_1)Y, \quad \text{where } H_1 = X_1(X_1^{\mathsf{T}}X_1)^{-1}X_1^{\mathsf{T}} \\ &= (\widetilde{X}_2^{\mathsf{T}}\widetilde{X}_2)^{-1}\widetilde{X}_2^{\mathsf{T}}Y, \quad \text{where } \widetilde{X}_2 = (I_n - H_1)X_2 \\ &= (\widetilde{X}_2^{\mathsf{T}}\widetilde{X}_2)^{-1}\widetilde{X}_2^{\mathsf{T}}\widetilde{Y}, \quad \text{where } \widetilde{Y} = (I_n - H_1)Y. \end{aligned}$$

Applications of FWL Midterm review

Application of FWL: intercept and centering

▶ Coefficients in $Y \sim 1 + X$ can be obtained from $Y \sim (I_n - H_1)X$, where

$$H_{1} = 1_{n}(1_{n}^{\mathsf{T}}1_{n})^{-1}1_{n} = n^{-1}1_{n}1_{n} = \begin{pmatrix} n^{-1} & \dots & n^{-1} \\ \vdots & \dots & \vdots \\ n^{-1} & \dots & n^{-1} \end{pmatrix}.$$

$$H_1 y = \begin{pmatrix} \bar{y} \\ \vdots \\ \bar{y} \end{pmatrix}.$$

$$(I_n - H_1) y = \begin{pmatrix} y_1 - \bar{y} \\ \vdots \\ y_n - \bar{y} \end{pmatrix}.$$

Centering

So what is $(I_n - H_1)X$?

Applications of FWL Midterm review

Application of FWL: intercept and centering

•
$$y^{\mathsf{T}}(I_n - H_1)y = [(I_n - H_1)y]^{\mathsf{T}}(I_n - H_1)y = \sum_i (y_i - \bar{y})^2 = (n - 1)\widehat{\sigma}_y^2.$$

• For $X : n \times p$,

$$X^{\mathsf{T}}(I_n - H_1)X = (n-1) \begin{pmatrix} \widehat{\sigma}_{11}^2 & \dots & \widehat{\sigma}_{1p}^2 \\ \vdots & \dots & \vdots \\ \widehat{\sigma}_{p1}^2 & \dots & \widehat{\sigma}_{pp}^2 \end{pmatrix}.$$

 $X^{\intercal}(I_n - H_1)X/(n-1)$ is the sample covariance.

▶ Why divide by n - 1?

Simpson's paradox: correlation and partial correlation

▶ (Marginal) correlation between $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$:

$$\widehat{\rho}_{xy} = \frac{\langle x - \bar{x}, y - \bar{y} \rangle}{\|x - \bar{x}\| \|y - \bar{y}\|} = \frac{\sum_{i} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i} (x_i - \bar{x})^2} \sqrt{\sum_{i} (y_i - \bar{y})^2}}.$$

$$\triangleright \ \widehat{\rho}_{xy} \in [-1, 1] \text{ (why?)}$$

▶ Partial correlation between x and y given $W \in \mathbb{R}^{n \times p}$:

$$\widehat{\rho}_{xy|W} := \widehat{\rho}_{\widehat{\varepsilon}_{x|W},\widehat{\varepsilon}_{y|W}},$$

where $\widehat{\varepsilon}_{x|W}, \widehat{\varepsilon}_{y|W}$ are respectively residuals from $x \sim 1 + W$ and $y \sim 1 + W$. This is the correlation between x and y while controlling for W, or after partialling out W. Applications of FWL Midterm review

Simpson's paradox: correlation and partial correlation

Simpson's paradox: $\hat{\rho}_{xy}$ and $\hat{\rho}_{xy|W}$ can have opposite signs.

Hypothesis testing: Wald F-test

Consider a long regression

$$Y = X\beta + \varepsilon = X_1\beta_1 + X_2\beta_2 + \varepsilon,$$

where $X_1 : n \times k$, $X_2 : n \times l$, $\beta_1 \in \mathbb{R}^k$ and $\beta_2 \in \mathbb{R}^l$.

► Want to test

$$H_0:\beta_2=\mathbf{0}.$$

Under <u>GM-N</u> $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_n)$, we can use *F*-test with $C = (\mathbf{0}_{I \times k}, I_I)$ so $C\beta = \beta_2$.

Recall:

Pivot for $C\beta$. Suppose $C \in \mathbb{R}^{l \times p}$ has linearly independent rows. Under <u>GM-N</u>, $F_C := \frac{(C\hat{\beta} - C\beta)^{\intercal} \{C(X^{\intercal}X)^{-1}C^{\intercal}\}^{-1}(C\hat{\beta} - C\beta)}{I\hat{\sigma}^2} \sim F_{l,n-p}.$

Hypothesis testing: Wald F-test

Also, recall:

► F-test (aka Wald) under <u>GM-</u>.

$$F_{Wald} = \frac{\widehat{\beta}_2^{\mathsf{T}}(S_{22})^{-1}\widehat{\beta}_2}{I\widehat{\sigma}^2} = \frac{\widehat{\beta}_2^{\mathsf{T}}\widetilde{X}_2^{\mathsf{T}}\widetilde{X}_2\widehat{\beta}_2}{I\widehat{\sigma}^2} \sim F_{I,n-p}.$$

Hypothesis testing: ANOVA

Long regression: $Y = X_1\beta_1 + X_2\beta_2 + \varepsilon$

▶ Under H_0 : $\beta_2 = \mathbf{0}$, it is reduced to Short regression: $Y = X_1\beta_1 + \varepsilon$.

 \square Under H_0 , the two regressions should have 'similar' RSS's:

$$\operatorname{RSS}_{\operatorname{long}} = Y^{\mathsf{T}}(I_n - H)Y, \quad \operatorname{RSS}_{\operatorname{short}} = Y^{\mathsf{T}}(I_n - H_1)Y.$$

 $\blacktriangleright RSS_{long} \le RSS_{short} \text{ (why?)}$

 X_1 : $n \times k$. X_2 : $n \times l$

▶ R. A. Fisher proposed the following ANOVA (Analysis of Variance) statistic:

$$F_{\text{ANOVA}} := \frac{(\text{RSS}_{\text{short}} - \text{RSS}_{\text{long}})/I}{\text{RSS}_{\text{long}}/(n-p)} = \frac{\text{RSS}_{\text{short}} - \text{RSS}_{\text{long}}}{I\,\widehat{\sigma}^2}.$$

Equivalence: Wald and ANOVA

Suppose X has linearly independent columns. Consider testing H_0 : $\beta_2 = \mathbf{0}$ in Theorem $Y = X_1 \beta_1 + X_2 \beta_2 + \varepsilon, \quad X_1 : n \times k, X_2 : n \times l$ with $F_{\mathsf{Wald}} = \frac{\widehat{\beta}_2^{\mathsf{T}}(S_{22})^{-1}\widehat{\beta}_2}{I\widehat{\sigma}^2} = \frac{\widehat{\beta}_2^{\mathsf{T}}\widetilde{X}_2^{\mathsf{T}}\widetilde{X}_2\widehat{\beta}_2}{I\widehat{\sigma}^2}$ and $F_{\text{ANOVA}} := \frac{(\text{RSS}_{\text{short}} - \text{RSS}_{\text{long}})/I}{\text{RSS}_{\text{res}}/(n-n)} = \frac{\text{RSS}_{\text{short}} - \text{RSS}_{\text{long}}}{I\hat{\sigma}^2}.$ **1** Under <u>**GM**- \mathcal{N} </u>, $F_{ANOVA} \sim F_{I,n-p}$ under H_0 . 2 In fact, for any X, Y without assuming GM- \mathcal{N} , $F_{Wald} = F_{ANOVA}$ numerically.

Equivalence: Wald and ANOVA

Proof.

- 1 Under <u>GM- \mathcal{N} </u>, $F_{ANOVA} \sim F_{I,n-p}$ under H_0 .
- **2** $F_{Wald} = F_{ANOVA}$ numerically.

Review: OLS

$$\widehat{\beta} = \arg\min_{b} \sum_{i=1}^{n} (y_i - b^{\mathsf{T}} x_i)^2 = \arg\min_{b} ||Y - Xb||^2.$$

► Normal equation

$$\sum_{i} (y_i - x_i^{\mathsf{T}} \widehat{\beta}) x_i = \mathbf{0} \iff X^{\mathsf{T}} (Y - X \widehat{\beta}) = \mathbf{0} \iff X^{\mathsf{T}} Y = X^{\mathsf{T}} X \widehat{\beta}.$$

▶ Projection, orthogonal decomposition

$$H = X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}, \quad \widehat{Y} = HY, \quad \widehat{\varepsilon} = (I_n - H)Y.$$
$$\|Y\|^2 = \|\widehat{Y}\|^2 + \|\widehat{\varepsilon}\|^2.$$

Review: Gauss-Markov

Т

<u>GM</u> We have $Y = X\beta + \varepsilon$ with

1 X is fixed and has linearly independent columns,

2
$$\mathbb{E} \varepsilon = \mathbf{0}, \operatorname{cov} \varepsilon = \sigma^2 I_n.$$

The unknown parameters are (β, σ^2) .

• Errors need not be independent.

Gauss–Markov Theorem. Under <u>GM</u>, let $\tilde{\beta}$ be any linear, unbiased estimator of β in the sense that

1)
$$\tilde{\beta} = AY$$
 for some $A \in \mathbb{R}^{p \times n}$ that does not depend on Y , (linear in what?)
2) $\mathbb{E} \tilde{\beta} = \beta$ for every β .
Then the OLS $\hat{\beta}$ satisfies
 $\operatorname{cov} \tilde{\beta} \succeq \operatorname{cov} \hat{\beta}$.
Review: Gauss-Markov-Normal

<u>GM-</u> \mathcal{N} We have $Y = X\beta + \varepsilon$ with

1 X is fixed and has linearly independent columns,

2 $\varepsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 I_n).$

The unknown parameters are (β, σ^2) .

Inference:

$$T_{c} := \frac{c^{\mathsf{T}}\widehat{\beta} - c^{\mathsf{T}}\beta}{\sqrt{\widehat{\sigma}^{2}c^{\mathsf{T}}(X^{\mathsf{T}}X)^{-1}c}} \sim t_{n-p}.$$
$$F_{C} := \frac{(C\widehat{\beta} - C\beta)^{\mathsf{T}} \left\{ C(X^{\mathsf{T}}X)^{-1}C^{\mathsf{T}} \right\}^{-1} (C\widehat{\beta} - C\beta)}{l\widehat{\sigma}^{2}} \sim F_{l,n-p}.$$

Prediction:

$$\frac{y_{n+1} - x_{n+1}^{\mathsf{T}}\widehat{\beta}}{\sqrt{\widehat{\sigma}^2 + \widehat{\sigma}^2 x_{n+1}^{\mathsf{T}} (X^{\mathsf{T}}X)^{-1} x_{n+1}}} \sim t_{n-p}$$

► Errors are iid.

Review: heteroskedastic linear model

Hetero We have $Y = X\beta + \varepsilon$, $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n)^{\mathsf{T}}$, where 1 X is fixed and has linearly independent columns. **2** ε_i 's are independent with $\mathbb{E} \varepsilon_i = 0$, var $\varepsilon_i = \sigma_i^2$ The unknown parameters are $(\beta, \sigma_1^2, \ldots, \sigma_n^2)$. Errors are independent. Theorem Consider Hetero model. Under (A1) (good limits) $B_n := n^{-1} \sum_{i=1}^n x_i x_i^{\mathsf{T}} \to B$ (full rank), $M_n := n^{-1} \sum_{i=1}^n \sigma_i^2 x_i x_i^{\mathsf{T}} \to M$ $\text{(A2) (moment condition)} \quad d_{2+\delta,n} := n^{-1}\sum_{i=1}^n \|x_i\|^{2+\delta} \, \mathbb{E} \, |\varepsilon_i|^{2+\delta} < C \quad \text{for } \delta > 0, \ C > 0,$ $\sqrt{n}(\widehat{\beta} - \beta) \rightarrow_{d} \mathcal{N}(\mathbf{0}, B^{-1}MB^{-1}).$

Review: Eicker-Huber-White

Theorem Consider <u>Hetero</u> model. Suppose it holds that

(A1) (good limits)
$$B_n := n^{-1} \sum_{i=1}^n x_i x_i^{\mathsf{T}} \to B$$
 (full rank), $M_n := n^{-1} \sum_{i=1}^n \sigma_i^2 x_i x_i^{\mathsf{T}} \to M$.

We have

$$\widehat{\Sigma}_n = B_n^{-1} \widehat{M}_m B_n^{-1} \rightarrow_p B^{-1} M B^{-1} = \Sigma$$

if the following (A3) (extra moment condition) holds:

$$n^{-1}\sum_{i} \operatorname{var}(\varepsilon_{i}^{2}) x_{i,j_{1}}^{2} x_{i,j_{2}}^{2}, \quad n^{-1}\sum_{i} x_{i,j_{1}} x_{i,j_{2}} x_{i,j_{3}} x_{i,j_{4}}, \quad n^{-2}\sum_{i} \sigma_{i}^{2} x_{i,j_{1}}^{2} x_{i,j_{2}}^{2} x_{i,j_{2}}^{2}$$

are bounded above by some constant C for all n and every $j_1, j_2, j_3, j_4 \in \{1, \dots, p\}$.

Review: Frisch-Waugh-Lovell

Long regression
$$Y = \underbrace{X_1}_{n \times k} \widehat{\beta}_1 + \underbrace{X_2}_{n \times l} \widehat{\beta}_2 + \widehat{\varepsilon}$$

Frisch–Waugh–Lovell Theorem Suppose X has linearly independent columns. In the long regression, the OLS for β_2 has the following equivalent forms:

$$\begin{aligned} \widehat{\beta}_2 &= [(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}Y]_{(k+1):(k+l)} \\ &= \{X_2^{\mathsf{T}}(I_n - H_1)X_2\}^{-1}X_2^{\mathsf{T}}(I_n - H_1)Y, \quad \text{where } H_1 = X_1(X_1^{\mathsf{T}}X_1)^{-1}X_1^{\mathsf{T}} \\ &= (\widetilde{X}_2^{\mathsf{T}}\widetilde{X}_2)^{-1}\widetilde{X}_2^{\mathsf{T}}Y, \quad \text{where } \widetilde{X}_2 = (I_n - H_1)X_2 \\ &= (\widetilde{X}_2^{\mathsf{T}}\widetilde{X}_2)^{-1}\widetilde{X}_2^{\mathsf{T}}\widetilde{Y}, \quad \text{where } \widetilde{Y} = (I_n - H_1)Y. \end{aligned}$$

- $\blacktriangleright X_2$ is the residual matrix from columnwise OLS fit of X_2 on X_1 .
- \triangleright \widetilde{Y} is the residual from OLS fit of Y on X_2 .
- ▶ $\hat{\beta}_2$ is the OLS from $\tilde{Y} \sim \tilde{X}_2$ (partial regression)
- ▶ $\hat{\beta}_2$ is also the OLS from $Y \sim \tilde{X}_2$ (no need to residualize Y).

Review: Gram–Schmidt and QR

Corollary (under orthogonality) When $X_1^{\mathsf{T}}X_2 = 0$, i.e., $\mathcal{C}(X_1) \perp \mathcal{C}(X_2)$, we have

$$\widetilde{X}_2 = X_2,$$

$$\widehat{eta}_2$$
 from $Y \sim X_1 + X_2 \,=\, \widetilde{eta}_2$ from $Y \sim X_2.$

$$X = (X_1, \dots, X_p)$$

$$= (U_1, \dots, U_p) \begin{pmatrix} 1 & \widehat{\beta}_{X_2|U_1} & \widehat{\beta}_{X_3|U_1} & \dots & \widehat{\beta}_{X_p|U_1} \\ 0 & 1 & \widehat{\beta}_{X_3|U_2} & \dots & \widehat{\beta}_{X_p|U_2} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

$$= Q \operatorname{diag}(||U_1||, \dots, ||U_p||) \begin{pmatrix} 1 & \widehat{\beta}_{X_2|U_1} & \widehat{\beta}_{X_3|U_1} & \dots & \widehat{\beta}_{X_p|U_1} \\ 0 & 1 & \widehat{\beta}_{X_3|U_2} & \dots & \widehat{\beta}_{X_p|U_2} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix} = Q R.$$

ANOVA Cochran's formula

BIOST/STAT 533, Sp 2024 Theory of Linear Models

Richard Guo

Lecture # 10: More on ANOVA; Cochran's formula; Omitted variable bias \$9

ANOVA One-way ANOVA Cochran's formula Two-way ANOVA

Recall: Wald and ANOVA equivalence

Suppose X has linearly independent columns. Consider testing H_0 : $\beta_2 = \mathbf{0}$ in Theorem $Y = X_1\beta_1 + X_2\beta_2 + \varepsilon$, $X_1 : n \times k$, $X_2 : n \times l$ with $F_{\mathsf{Wald}} = \frac{\widehat{\beta}_2^{\mathsf{T}}(S_{22})^{-1}\widehat{\beta}_2}{I\widehat{\sigma}^2} = \frac{\widehat{\beta}_2^{\mathsf{T}}\widetilde{X}_2^{\mathsf{T}}\widetilde{X}_2\widehat{\beta}_2}{I\widehat{\sigma}^2}$ and $F_{\text{ANOVA}} := \frac{(\text{RSS}_{\text{short}} - \text{RSS}_{\text{long}})/I}{\text{RSS}_{\text{res}}/(n-n)} = \frac{\text{RSS}_{\text{short}} - \text{RSS}_{\text{long}}}{I\hat{\sigma}^2}.$ **1** Under <u>GM- \mathcal{N} </u>, $F_{ANOVA} \sim F_{I,n-p}$ under H_0 . 2 In fact, for any X, Y without assuming GM- \mathcal{N} , $F_{Wald} = F_{ANOVA}$ numerically.

ANOVA Cochran's formula One-way ANOVA Two-way ANOVA

Jargon

Traditionally,

- ANOVA (analysis of variance) regression with indicator variables.
- ANCOVA (analysis of covariance) regression with indicator and quantitative variables.

One-way ANOVA Two-way ANOVA

One-way ANOVA: Example

A health researcher wishes to compare the effects of four anti-inflammatory drugs on arthritis patients. She takes a random sample of patients and divides them randomly into four groups, each of which receives one of the drugs.

One-way ANOVA Two-way ANOVA

One-way ANOVA: Example

- The type of drug is usually referred to as a factor or treatment.
- The four kinds of drug are referred to as levels of the factor.
- We can model this as follows: $Y_{ij} = \mu_i + \varepsilon_{ij}$ where ε_{ij} i.i.d. with mean zero and variance σ^2 , and $i = 1, \ldots, I$, $j = 1, \ldots, J_i$.
- What does the design matrix look like?
- An alternative parametrization: $Y_{ij} = \alpha + \mu_i + \varepsilon_{ij}$; need an identifiability constraint.

ANOVA Cochran's formula

One-way ANOVA Two-way ANOVA

An example

Suppose we have observations $\{\{y_{ij}\}_{j=1}^{J_i}\}_{i=1}^{I}$, $\mathbb{E}(y_{ij}) = \mu_i$, $\operatorname{var}(y_{ij}) = \sigma^2$, and the y_{ij} 's are all independent. Let $n = \sum_{i=1}^{I} J_i$.

	Observations	Mean
Population 1	y_{11},\ldots,y_{1j_1}	\overline{y}_{1} .
÷	:	:
Population I	y_{l1},\ldots,y_{lj_l}	\overline{y}_{I} .

One-way ANOVA To test $H_0: \mu_1 = \ldots = \mu_I$, we use the *F*-statistic:

$$F = \frac{(RSS_{H_0} - RSS)/(I-1)}{RSS/(n-I)} = \frac{\sum_i J_i(\overline{y}_{i.} - \overline{y}_{..})^2/(I-1)}{\sum_i \sum_j (y_{ij} - \overline{y}_{i.})^2/(n-I)},$$

which has an $F_{l-1,n-l}$ distribution under H_0 if the errors are normally distributed, and approximately an *F*-distribution if the sample size is large. (why?)

One-way ANOVA Two-way ANOVA

A typical analysis

- **1** Test for overall model significance (i.e. $H_0: \mu_1 = \ldots = \mu_I$).
- 2 If the model is significant overall, then test specific contrasts of interest.

► Since this analysis involves performing multiple tests, some method for multiple testing control must be applied, such as a Bonferroni correction.

Outside the scope of this course

Typical results table for one-way ANOVA

ANOVA table with $J_1 = \ldots = J_I$.

	D.F.	Sum of Squares	Mean Sum of Squares
Groups	I - 1	$SSTrt = J \sum_{i} (\overline{y}_{i\cdot} - \overline{y}_{\cdot\cdot})^2$	SSTrt/(I-1)
Error	I(J-1)	$SSErr = \sum_{i} \sum_{j} (y_{ij} - \overline{y}_{i})^2$	SSErr/(I(J-1))
Total	IJ-1	$SSTot = \sum_{i} \sum_{j} (y_{ij} - \overline{y}_{})^2$	

Now we can see why it is called ANOVA.

F-test:
$$F = \frac{SSTrt/(I-1)}{SSErr/(I(J-1))}$$

Two-way ANOVA with balanced design: Example

A health researcher wishes to compare the effects of I anti-inflammatory drugs (factor A), as well as J different dosages (factor B), on arthritis patients. In total, there are IJ different combinations of the levels. She randomly assigns K patients to each combination of levels; there are n = IJK patients in total.

Two-way ANOVA with balanced design: Example

- We assume that $y_{ijk} = \mu_{ij} + \varepsilon_{ijk}$ where the ε_{ijk} are i.i.d. with mean zero and variance σ^2 and where i = 1, ..., I, j = 1, ..., J, k = 1, ..., K.
- Tests:
 - 1 Test $H_0: \mu_{ij} = \mu$ for all i, j.
 - 2 Test whether the factors interact: does the effect of factor A at level *i* depend on the level of factor B?

ANOVA Cochran's formula

Cochran's formula

Recall that from FWL that for $X_1 : n \times k$, $X_2 : n \times l$, from

$$\begin{array}{ll} \text{long:} \quad Y = X_1 \widehat{\beta}_1 + X_2 \widehat{\beta}_2 + \widehat{\varepsilon}, \\ \text{short:} \quad Y = X_2 \widetilde{\beta}_2 + \widetilde{\varepsilon}, \end{array}$$

we generally expect $\widetilde{\beta}_2 \neq \widehat{\beta}_2$.

(When are they equal?)

Cochran's formula The short regression coefficients can be written as

$$\widetilde{\beta}_2 = \widehat{\beta}_2 + \widehat{\delta}\,\widehat{\beta}_1,$$

where $\delta : I \times k$ is from column-wise OLS

$$X_1 = X_2 \widehat{\delta} + \widehat{U}.$$

SEM interpretation

Cochran's formula $\beta_2 = \hat{\beta}_2 + \hat{\delta} \hat{\beta}_1$ is a purely algebraic result that holds for OLS's long: $Y = X_1 \hat{\beta}_1 + X_2 \hat{\beta}_2 + \hat{\varepsilon}$,

short:
$$Y = X_2 \widetilde{eta}_2 + \widetilde{arepsilon},$$

intermediate: $X_1 = X_2 \widehat{\delta} + \widehat{U}.$

ANOVA Cochran's formula

Proof.

Omitted-variable bias

Omitted-variable bias
$$\widetilde{\beta}_2 - \widehat{\beta}_2 = \widehat{\delta} \, \widehat{\beta}_1.$$

▶ So
$$\widetilde{\beta}_2 = \widehat{\beta}_2$$
 if either

1)
$$\widehat{\delta}=0\iff X_1\perp X_2$$
, or

$$\widehat{\beta}_1 = 0 \iff Y \perp \widetilde{X}_1 = (I - H_2)X_1.$$

Example: confounding bias

- z_i: treatment (1: treated; 0: control)
- x_i: observed baseline covariates

OLS:
$$y_i = \widetilde{\beta}_0 + \widetilde{\beta}_1 z_i + \widetilde{\beta}_2^{\mathsf{T}} x_i + \widetilde{\varepsilon}_i$$
.

> But confounder u_i may be unobserved. The ideal (but infeasible) OLS is

$$y_i = \widehat{\beta}_0 + \widehat{\beta}_1 z_i + \widehat{\beta}_2^\mathsf{T} x_i + \widehat{\beta}_3^\mathsf{T} u_i + \widehat{\varepsilon}_i.$$

Cochran's formula:

$$\begin{pmatrix} \widetilde{\beta}_0\\ \widetilde{\beta}_1\\ \widetilde{\beta}_2 \end{pmatrix} = \begin{pmatrix} \widehat{\beta}_0\\ \widehat{\beta}_1\\ \widehat{\beta}_2 \end{pmatrix} + \widehat{\beta}_3 \begin{pmatrix} \widehat{\delta}_0\\ \widehat{\delta}_1\\ \widehat{\delta}_2 \end{pmatrix} \implies \widetilde{\beta}_1 - \widehat{\beta}_1 = \widehat{\beta}_3 \widehat{\delta}_1,$$

where $(\widehat{\delta}_0, \widehat{\delta}_1, \widehat{\delta}_2)$ comes from $u_i \sim 1 + z_i + x_i$.

BIOST/STAT 533, Sp 2024 Theory of Linear Models

Richard Guo

Lecture # 11: R^2 , leverage scores and LOO §10, §11

Now, let us turn to the art part of linear models.

Multiple correlation coefficient R^2

Consider $Y \sim 1 + X$, where $X : n \times (p - 1)$ and $(1_n, X)$ has linearly independent columns. Recall variance decomposition:

Multiple correlation coefficient

$$\mathcal{R}^2 = (ext{var} ext{ explained } \%) = rac{\sum_i (\widehat{y_i} - ar{y})^2}{\sum_i (y_i - ar{y})^2}.$$

B

RSS =
$$(1 - R^2) \sum_{i} (y_i - \bar{y})^2$$
.

R^2 in equivalent forms

1

$$R^2 = \widehat{\rho}_{y,\widehat{y}}^2.$$

2 Relation to ANOVA.

$$Y = \mathbf{1}_n \widehat{\beta}_0 + X \widehat{\beta} + \widehat{\varepsilon}$$
$$Y = \mathbf{1}_n \widetilde{\beta}_0 + \widetilde{\varepsilon}.$$

R

$$R^2 = rac{\mathrm{RSS}_{\mathrm{short}} - \mathrm{RSS}_{\mathrm{long}}}{\mathrm{RSS}_{\mathrm{short}}}.$$

Compare this with

$$F_{\text{ANOVA}} = rac{(ext{RSS}_{ ext{short}} - ext{RSS}_{ ext{long}})/(p-1)}{ ext{RSS}_{ ext{long}}/(n-p)}.$$

Distribution of R^2

We have

$$F_{\mathrm{ANOVA}} = rac{R^2}{1-R^2} imes rac{n-p}{p-1}.$$

Null distribution of R^2 . Assume a <u>GM-N</u> model $Y = 1_n\beta_0 + X\beta + \varepsilon$ with $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_n)$. Suppose $(1_n, X)$ has linearly independent columns. Then, under

 $H_0: \beta = 0 \iff X$ explains no variance of Y in population,

we have

$$R^2 \sim \operatorname{Beta}\left(rac{p-1}{2}, rac{n-p}{2}
ight).$$

 $\mathbb{E} \mathbb{R}^2 = (p-1)/(n-1)$ under the null.

Leverage

The leverage of observation i is

$$h_{ii} = (H)_{ii} = x_i^{\mathsf{T}} (X^{\mathsf{T}} X)^{-1} x_i.$$

Recall that

$$\sum_{i} h_{ii} = \mathrm{Tr}(H) = \mathrm{rank}(H) = n - p.$$

▶ It holds that $0 \le h_{ii} \le 1$.

(why?)

 \square Leverage only concerns X (not Y)!

Leverage as a measure of ...

1 Sensitivity.

$$\partial \hat{y}_i / \partial y_i = h_{ii} \qquad (why?)$$

Also, under GM, var(\hat{y}_i) = $\sigma^2 h_{ii}$. (why?)

2 Outlier. Suppose X = (1_n, X₂) and let H₁ = n⁻¹1_n1^T_n. Let S := (n − 1)⁻¹ ∑_i(x_{2,i} − x̄₂)(x_{2,i} − x̄₂)^T be sample covariance of X₂.
▶ Consider D_i² that measures the Mahalanobis distance between x_{i2} and x̄₂:
D² := (x_i − x̄₂)^T S⁻¹(x_i − x̄₂)

$$D_i^2 := (x_{i2} - \bar{x}_2)^T S^{-1} (x_{i2} - \bar{x}_2)$$

Theorem 11.2

$$h_{ii}=\frac{1}{n}+\frac{D_i^2}{n-1}.$$

Leverage and leave-one-out (LOO) formulae

Consider OLS from deleting the *i*-th observation

$$\widehat{\beta}_{[-i]} := (X_{[-i]}^{\mathsf{T}} X_{[-i]})^{-1} X_{[-i]}^{\mathsf{T}} Y_{[-i]}, \quad i = 1, \dots, n.$$

Basic idea: If *i* is not an outlier, result should not change much upon deleting *i*.

LOO formula When $h_{ii} \neq 1$, $\widehat{\beta}_{[-i]} = \widehat{\beta} - (1 - h_{ii})^{-1} (X^{\intercal} X)^{-1} x_i \widehat{\varepsilon}_i.$

(What if $h_{ii} = 1$?)

Predicted residual

Recall that residual

$$\widehat{\varepsilon}_{i} = y_{i} - \widehat{y}_{i} = y_{i} - x_{i}^{\mathsf{T}}\widehat{\beta} = [(I_{n} - H)Y]_{i}$$

Under GM, var $\widehat{\varepsilon}_{i} = \sigma^{2}(1 - h_{ii})$ (why?)

▶ We use LOO to define the predicted residual

$$\widehat{\varepsilon}_{[-i]} := y_i - x_i^\mathsf{T} \widehat{\beta}_{[-i]}.$$

Theorem We have $\widehat{\varepsilon}_{[-i]} = \widehat{\varepsilon}_i/(1 - h_{ii}).$ Under <u>GM</u>, var $\widehat{\varepsilon}_{[-i]} = \sigma^2/(1 - h_{ii}).$

Standardized residual and studentized residual

▶ Under <u>GM- \mathcal{N} </u>, $\hat{\varepsilon}_i \sim \mathcal{N}(0, \sigma^2(1 - h_{ii}))$. This motivates the standardized residual

$$\mathsf{standr}_i := rac{\widehat{arepsilon}_i}{\sqrt{\widehat{\sigma}^2(1-h_{ii})}}$$

(What is its distribution?)

▶ Under $\underline{\mathsf{GM}}$ - \mathcal{N} , $\widehat{\varepsilon}_{[-i]} \sim \mathcal{N}(0, \sigma^2/(1 - h_{ii}))$ and we define

$$\operatorname{studr}_i := rac{\widehat{arepsilon}_{[-i]}}{\sqrt{\widehat{\sigma}_{[-i]}^2 / (1 - h_{ii})}}.$$

studr_i $\sim t_{n-1-p}$.

(why?)

Cook's distance

► A related measure is **Cook's distance**

$$\mathsf{cook}_i := rac{\|X^\intercal(\widehat{eta} - \widehat{eta}_{[-i]})\|^2}{p\widehat{\sigma}^2}.$$

Cook's distance is related to the standardized residual via

$$\operatorname{cook}_i = \operatorname{standr}_i^2 \times \frac{h_{ii}}{p(1-h_{ii})}.$$

lm() diagnostic plots in R

1 Residuals vs Fitted: studr_i $\sim \hat{y}_i$.

> plot(lm(y \sim X))

https://library.virginia.edu/data/articles/diagnostic-plots 12/15

lm() diagnostic plots in R

2 Normal QQ plot: sample quantiles of studr_i \sim quantiles of $\mathcal{N}(0, 1)$.

lm() diagnostic plots in R

3 Location-Scale plot: $\sqrt{|\text{studr}_i|} \sim \hat{y}_i$.

lm() diagnostic plots in R

4 Residuals vs Leverage: studr_i $\sim h_{ii}$.

Population OLS Misspecified linear model

BIOST/STAT 533, Sp 2024 Theory of Linear Models

Richard Guo

Lecture # 12: Population OLS, misspecified linear model \$12
Population least squares

Solution Consider random variable Y and random vector $X \in \mathbb{R}^p$.

In this lecture, X and Y are no longer the data of n rows!
X is not fixed but also random now!

Theorem For any measurable, real-valued function f(X) of X, we have bias-variance decomposition

$$\mathbb{E}(Y-f(X))^2=\mathbb{E}\{\mathbb{E}[Y\mid X]-f(X)\}^2+\mathbb{E}\operatorname{var}[Y\mid X].$$

Further, we have

$$\mathbb{E}[Y \mid X] = \arg\min_{f} \mathbb{E}(Y - f(X))^2,$$

where the minimization is over all square integrable, measurable function of X.

Now consider linear functions of X: $f(X) = \beta^{\mathsf{T}} X$, $\beta \in \mathbb{R}^{p}$. \triangleright Population OLS:

$$\beta = \arg\min_{b} \mathbb{E}(Y - b^{\mathsf{T}}X)^2 = \arg\min_{b} \mathbb{E}([\mathbb{E}[Y \mid X] - b^{\mathsf{T}}X)^2.$$
(why?)

Solution What is the interpretation of $\beta^{T}X$?

Theorem $\beta = (\mathbb{E} X X^{\intercal})^{-1} \mathbb{E}[XY]$ when $\mathbb{E} X X^{\intercal}$ is invertible.

▶ For $X \in \mathbb{R}$, univariate population OLS: $(\alpha, \beta) = \arg \min_{a,b} \mathbb{E}(Y - a - bX)^2$.

$$\alpha = \mathbb{E} Y - \beta \mathbb{E} X, \quad \beta = \frac{\operatorname{cov}(X, Y)}{\operatorname{var} X} = \rho_{XY} \sqrt{\frac{\operatorname{var} Y}{\operatorname{var} X}}.$$

$$\square \rho_{XY} = \frac{\operatorname{cov}(X,Y)}{\sqrt{\operatorname{var}(X)\operatorname{var}(Y)}}.$$

Population FWL

Suppose Y is a random variable and $X \in \mathbb{R}^{p-1}$ a random vector. Consider a population OLS

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_{p-1} + \varepsilon.$$

Also consider the following population OLS's:

These equations *define* the residuals.

$$\begin{aligned} X_k &= \gamma_0 + \gamma_1 X_1 + \dots + \gamma_{k-1} X_{k-1} + \gamma_{k+1} X_{k+1} + \dots + \gamma_{p-1} X_{p-1} + \widetilde{X}_k, \\ Y &= \delta_0 + \delta_1 X_1 + \dots + \delta_{k-1} X_{k-1} + \delta_{k+1} X_{k+1} + \dots + \delta_{p-1} X_{p-1} + \widetilde{Y}, \\ \widetilde{Y} &= \widetilde{\beta}_k \widetilde{X}_k + \widetilde{\varepsilon}. \end{aligned}$$

Population FWL Theroem

$$1 \ \beta_k = \widetilde{\beta}_k = \operatorname{cov}(\widetilde{X}_k, \widetilde{Y}) / \operatorname{var} \widetilde{X}_k = \operatorname{cov}(\widetilde{X}_k, Y) / \operatorname{var} \widetilde{X}_k.$$

2 $\widetilde{\varepsilon} = \varepsilon$ almost surely.

Population OLS Misspecified linear model

Population R^2

▶ Nonparametric
$$R^2$$
: For $f^* = \arg \min_{f \in \mathcal{F}} \mathbb{E}(Y - f(X))^2$,

$$\operatorname{var} Y = \mathbb{E}(Y - \mathbb{E} Y)^2 = \mathbb{E}(Y - f^*(X))^2 + \operatorname{var} f^*(X) \, , \quad (why?)$$

and

$$R^2_{\mathcal{F}} = rac{\operatorname{\mathsf{var}} f^*(X)}{\operatorname{\mathsf{var}} Y} \in [0,1].$$

• When \mathcal{F} is the set of linear functions of (1, X),

$$R^2 = \frac{\Sigma_{Y,X} \Sigma_{X,X}^{-1} \Sigma_{X,Y}}{\operatorname{var} Y},$$

where

$$\operatorname{cov} \begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} \Sigma_{X,X} & \Sigma_{X,Y} \\ \Sigma_{Y,X} & \operatorname{var} Y \end{pmatrix}.$$

Population OLS Misspecified linear model

OLS inference when linear model is misspecified

Let (x_i, y_i) be iid copies of (X, Y). We do not assume a linear model for $Y \sim X$ holds in the population (data generating mechanism).

Solution We have $\widehat{\beta}$ be OLS from $(x_i, y_i) : i = 1, ..., n$. Let β be the population OLS:

$$Y = \beta^{\mathsf{T}} X + \varepsilon.$$

Not assuming a linear model!

Theorem Let
$$(x_i, y_i)_{i=1}^n$$
 be iid copies of (X, Y) .
1 $\widehat{\beta} \rightarrow_p \beta$.
2 $\sqrt{n}(\widehat{\beta} - \beta) \rightarrow_d \mathcal{N}(0, \Sigma)$, where
 $\Sigma = B^{-1}MB^{-1}, \quad B = \mathbb{E}XX^{\mathsf{T}}, \quad M = \mathbb{E}(\varepsilon^2 XX^{\mathsf{T}}).$
3 Eicker-Huber-White $\Sigma_{\mathsf{FUM}} \rightarrow \Sigma$ if $\mathbb{E} ||X||^4 < \infty$ and $\mathbb{E}X^4 < \infty$.

Best linear approximation

The target of OLS $\widehat{\beta}$ is the

- the correct β if linear model holds;
- when linear model does not hold, the population OLS $\beta = \arg \min_{b} \mathbb{E}(Y b^{\mathsf{T}}X)^2$;
- however, β not only depends on $\mathbb{E}[Y \mid X]$, but also the distribution of X

$$\beta = \arg\min_{b} \mathbb{E} \{ \mathbb{E}[Y \mid X] - b^{\mathsf{T}}X \}^2.$$

BIOST/STAT 533, Sp 2024 Theory of Linear Models

Richard Guo

Lecture # 13: Overfitting, bias-variance trade-off, model selection \$13

Caution of R^2

$${\mathcal R}^2 = (ext{var} ext{ explained } \%) = rac{\sum_i (\widehat{y}_i - ar{y})^2}{\sum_i (y_i - ar{y})^2}.$$

Recall that

Null distribution of R^2 . Assume a <u>GM-N</u> model $Y = 1_n\beta_0 + X\beta + \varepsilon$ with $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_n)$. Suppose $(1_n, X)$ has linearly independent columns. Then, under

 $H_0: \beta = 0 \iff X$ explains no variance of Y in population,

we have

$$R^2 \sim \operatorname{Beta}\left(rac{p-1}{2}, rac{n-p}{2}
ight).$$

 $\mathbb{E} \mathbb{R}^2 = (p-1)/(n-1)$ under the null.

What happens when $p/n \rightarrow \gamma$?

Variance inflation factor

Let $X : n \times (p-1)$ be a fixed design matrix. Suppose

$$y_i = f(x_i) + \varepsilon_i,$$

where ε_i 's are uncorrelated with mean zero and variance σ^2 .

Short regression:
$$Y = \widetilde{\alpha} + \widetilde{\beta}_j X_j + \widetilde{\varepsilon}$$

Long regression: $Y = \widehat{\alpha} + \widehat{\beta}_1 X_1 + \dots + \widehat{\beta}_{p-1} X_{p-1} + \widehat{\varepsilon}_j$

Theorem We have

$$\operatorname{var}\widehat{\beta}_j = \operatorname{var}\widetilde{\beta}_j \times \underbrace{\frac{1}{1-R_j^2}}_{\mathsf{VIF}},$$

....

where R_i^2 is the R^2 from OLS $X_j \sim 1 + X_{-j}$.

Bias-variance trade-off

Suppose the true data generating mechanism is

$$y_i = \beta_0 + \beta_1 x_{i,1} + \dots + \beta_s x_{i,s} + \varepsilon_i$$

with s non-null covariates.

- Solution Consider running OLS fitting Y on X_1, \ldots, X_p .
 - What happens when p < s?
 - What happens when p > s?

Typical trade-off: under linear model

RSS/n

23

30

covariates

Typical trade-off: under a non-linear model

prediction errors

covariates

Adjusted R^2

Recall that $\underbrace{\sum_{i} (y_i - \bar{y})^2}_{\text{total var}} = \underbrace{\sum_{i} (\hat{y}_i - \bar{y})^2}_{\text{var explained}} + \underbrace{\sum_{i} (y_i - \hat{y}_i)^2}_{\text{var unexplained (RSS)}} \cdot \\
1 - R^2 = \frac{\sum_{i} (y_i - \hat{y}_i)^2}{\sum_{i} (y_i - \bar{y})^2} = \frac{\|(I - H)Y\|^2}{\|(I - H_1)Y\|^2}$

To account for model complexity, define adjusted R^2 as

$$\bar{R}^2 = 1 - (1 - R^2) \frac{n - 1}{n - p} = 1 - \frac{\|(I - H)Y\|^2 / (n - p)}{\|(I - H_1)Y\|^2 / (n - 1)} = 1 - \frac{\widehat{\sigma}^2}{\widehat{\sigma}_Y^2}$$

Mallow's C_p

$$C_p := \|Y - \widehat{Y}\|^2 + 2p\sigma^2.$$

▶ Infeasible but unbiased for MSPE over the same X but new Y

Akaike's information criterion (AIC)

Consider the more general set up: $Y_i \sim f(y), i = 1, ..., n$ but a parametric model $Y_i \sim f(y; \theta)$ is fitted over an Euclidean model space Θ .

$$\mathsf{AIC} = -2\sum_{i=1}^{n} \log f(Y_i; \widehat{\theta}) + 2\mathsf{dim}(\Theta)$$

- For model selection, AIC attempts to estimate prediction error $-2E_f \{ \log f(Y_{n+1}; \hat{\theta}) \mid \hat{\theta} \}$, where the expectation is taken over a new observation Y_{n+1} .
- $2\dim(\Theta)$ is a correction term

Bayesian information criterion (BIC)

BIC is motivated by Bayesian perspective on model selection and is defined as

$$\mathsf{BIC}(\Theta) = -2\sum_{i=1}^{n} \log f(Y_i; \widehat{\theta}) + \dim(\Theta) \log n$$

- Intuition: suppose {Θ₁,..., Θ_m} is a collection of model spaces. If we assign a uniform prior on the model spaces, P(Θ_k) = 1/m for all k. Then as n → ∞, the posterior probability for a model is approximately P(Θ_k | Data) ∝ e^{-BIC(Θ_k)/2}.
- Compared with AIC, BIC puts a larger penalty on model complexity and thus selects a smaller model.
- Rule of thumb: AIC is more suitable for prediction and BIC is more suitable for selecting the "correct" model.

AIC and BIC

Under $\underline{\mathbf{GM}}$,

$$AIC = n \log \frac{RSS}{n} + 2p$$
$$BIC = n \log \frac{RSS}{n} + p \log n$$

(why?)

▶ Shao (1997):

- If the linear model is correctly specified, BIC can consistently select the true model.
- Even when the linear model is misspecified, AIC can select the model that minimizes the prediction error.

Cross-validation and its approximation

▶ We can use *K*-fold CV to select covariates.

▶ When K = n, we can use LOO formula to approximate the actual CV.

Recall the LOO predicted residual:

$$\widehat{\varepsilon}_{[-i]} := y_i - x_i^{\mathsf{T}} \widehat{\beta}_{[-i]} = \frac{\widehat{\varepsilon}_i}{1 - h_{ii}}.$$

► Define the predicted residual error sum of squares $PRESS := \sum_{i} \hat{\varepsilon}_{[-i]}^2$. Replacing $h_{ii} \approx p/n$ (why?).

PRESS
$$\approx \text{GCV} := \sum_{i} \frac{\varepsilon_i^2}{(1 - p/n)^2} = (1 - p/n)^{-2} \times \text{RSS}.$$

▶ When $p/n \approx 0$, $\log \text{GCV}$ is approximately equivalent to AIC.

(whv?)

Algorithms for model selection

- Best subset selection
- Forward stepwise
- Backward stepwise

Best subset selection

- We have p possible predictors and we want to know which to use in our model.
- We could consider every possible model (there are 2^p of them) and select the one with smallest cross-validation error.
- If p = 3 there are $2^3 = 8$ possible models.
- If p = 6 there are $2^6 = 64$ possible models.
- If p = 250 there are $2^{250} \approx 10^{80}$ possible models.
- Obviously we need a more efficient alternative.

Forward stepwise selection

- 1 Fit *p* univariate regression models one with each predictor and select the predictor corresponding to the most significant model (largest F-stat, or equivalently reduces the RSS the most).
- 2 Then fit p-1 models containing the predictor that we just selected and each of the p-1 other predictors. Select the predictor corresponding to the most significant model.
- 3 Now we have selected 2 predictors. Fit the p-2 models containing these 2 predictors, and each of the p-2 other predictors. Select the predictor corresponding to the most significant model.
- 4 And so on....

This procedure will result in p + 1 distinct models, containing between 0 and p predictors.

Backward stepwise selection

Just like forward stepwise, but we instead start with the model containing all of the features and remove features one-at-a-time.

Pros and cons of stepwise selection

- Backward and forward stepwise selection are much more efficient than best subset selection... they require looking at p + (p 1) + ... (on the order of p^2) models, rather than 2^p models!
- However, backward stepwise and forward stepwise will give us different answers!
- They will not give us the "best" model for a fixed number of predictors.

For 0,1,2,3 regressors,

- The best subset algorithm selects $\emptyset, \{3\}, \{1,2\}, \{1,2,3\}$
- The forward stepwise algorithm selects $\emptyset, \{3\}, \{2,3\}, \{1,2,3\}$
- The backward stepwise algorithm selects $\emptyset, \{2\}, \{1,2\}, \{1,2,3\}$

Model selection

- With the path plot, we can then select a single model by using one of the quantitative criteria introduced above.
- This can be combined with model diagnostics.

BIOST/STAT 533, Sp 2024 Theory of Linear Models

Richard Guo

Lecture # 14: Generalized and weighted least squares; Transformations in OLS §19, §16

Recall: Gauss-Markov

- **<u>GM</u>** The data generating process obeys $Y = X\beta + \varepsilon$,
 - 1 X is fixed and has linearly independent columns,

2
$$\mathbb{E} \varepsilon = \mathbf{0}$$
, cov $\varepsilon = \sigma^2 I_n$.

The unknown parameters are (β, σ^2) .

Gauss–Markov Theorem. Under <u>GM</u>, let $\tilde{\beta}$ be any linear, unbiased estimator of β in the sense that

$${f 1}\;\widetildeeta={\sf A}{\sf Y}$$
 for some ${\sf A}\in\mathbb{R}^{p imes n}$ that does not depend on ${\sf Y}$,

2
$$\mathbb{E}\widetilde{\beta} = \beta$$
 for every β .

Then the OLS $\widehat{\beta}$ satisfies

$$\operatorname{cov}\widetilde{\beta} \succeq \operatorname{cov}\widehat{\beta}.$$

Gauss-Markov Generalized model

<u>**GM-Generalized</u>** (aka. Aitkin model) The data generating process obeys $Y = X\beta + \varepsilon$,</u>

1 X is fixed and has linearly independent columns,

2
$$\mathbb{E} \varepsilon = \mathbf{0}$$
, cov $\varepsilon = \sigma^2 \Sigma$.

The unknown parameters are (β, σ^2) ; Σ is a known positive definite matrix.

Special cases:

- $\Sigma = I_n$
- $\Sigma = \operatorname{diag}(w_1^{-1}, \ldots, w_n^{-1})$
- $\Sigma = \text{diag}(\Sigma_1, \Sigma_2, \dots, \Sigma_K)$

Note that Σ is known under <u>GM-Generalized</u>. Hence, $\Sigma = \text{diag}(w_1^{-1}, \dots, w_n^{-1})$ is different from <u>Hetero</u>. GM
 weighted least squares
 clusters

Recall: Heteroskedastic linear model

Hetero The data generating process obeys

$$Y = X\beta + \varepsilon, \quad \varepsilon = (\varepsilon_1, \ldots, \varepsilon_n)^{\mathsf{T}},$$

where

1 X is fixed and has linearly independent columns,

2 ε_i 's are independent with $\mathbb{E} \varepsilon_i = 0$, var $\varepsilon_i = \sigma_i^2$

The unknown parameters are $(\beta, \sigma_1^2, \ldots, \sigma_n^2)$.

OLS, GLS and BLUE

<u>**GM-Generalized</u>** (aka. Aitkin model) The data generating process obeys $Y = X\beta + \varepsilon$,</u>

1 X is fixed and has linearly independent columns,

2
$$\mathbb{E} \varepsilon = \mathbf{0}$$
, cov $\varepsilon = \sigma^2 \Sigma$.

The unknown parameters are (β, σ^2) ; Σ is a known positive definite matrix.

OLS is unbiased but not BLUE under <u>GM-Generalized</u>.

(why?)

Theorem Under <u>GM-Generalized</u>, the generalized least squares (GLS) is **BLUE**:

$$\widehat{\beta}_{\Sigma} := (X^{\mathsf{T}} \Sigma^{-1} X)^{-1} X^{\mathsf{T}} \Sigma^{-1} Y.$$

Further, we have

$$\mathbb{E}\,\widehat{\beta}_{\Sigma}=eta,\quad \operatorname{cov}\widehat{\beta}_{\Sigma}=\sigma^2(X^{\intercal}\Sigma^{-1}X)^{-1}.$$

OLS, GLS and BLUE

From comparing OLS and GLS,

$$(X^{\mathsf{T}}\Sigma^{-1}X)^{-1} \preceq (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\Sigma X(X^{\mathsf{T}}X)^{-1}.$$

What happens if using GLS $\hat{\beta}_{\Omega}$ (for some covariance Ω) under <u>GM-Generalized</u> with covariance Σ?

Weighted least squares

When
$$\Sigma = \text{diag}(w_1^{-1}, \dots, w_n^{-1})$$
, the weighted least squares (WLS) is
 $\widehat{\beta}_w = \widehat{\beta}_{\Sigma} = (X^{\mathsf{T}}\Sigma^{-1}X)^{-1}X^{\mathsf{T}}\Sigma^{-1}Y$

$$= \left(\sum_i w_i x_i x_i^{\mathsf{T}}\right)^{-1} \sum_i w_i x_i y_i.$$

Under <u>GM-Generalized</u>,

$$\operatorname{cov}\widehat{\beta}_{\mathsf{w}} = \sigma^2 \left(\sum_i w_i x_i x_i^{\mathsf{T}}\right)^{-1}.$$

▶ Under <u>Hetero</u>, we have Eicker-Huber-White estimator for the asymptotic covariance of $\hat{\beta}_w$:

$$\widehat{\Sigma}_{\mathsf{EHW},w} = \left(n^{-1}\sum_{i} w_{i}x_{i}x_{i}^{\mathsf{T}}\right)^{-1} \left(n^{-1}\sum_{i} w_{i}^{2}\widehat{\varepsilon}_{w,i}^{2}x_{i}x_{i}^{\mathsf{T}}\right) \left(n^{-1}\sum_{i} w_{i}x_{i}x_{i}^{\mathsf{T}}\right)^{-1} \quad (why?)$$

Weighted least squares: Two-stage under heteroskedasticity

Consider <u>Hetero</u> model where $\sigma_1^2, \ldots, \sigma_n^2$ are unknown.

- OLS is consistent, but not efficient.
- WLS (with $w_i = \sigma_i^{-2}$) is consistent and efficient but the true weights are unknown!
- Two-stage method:
 - **1** Use OLS to estimate β and get residuals $\hat{\varepsilon}_1, \ldots, \hat{\varepsilon}_n$.
 - 2 Use *ĉ*₁,...,*ĉ*_n to estimate a postulated model of *σ*²_i = *σ*²(*x*_i; *θ*).
 ▶ E.g., fit a linear model log(*ĉ*²_i) ~ X and exponentiate.
 - **3** Fit WLS $\hat{\beta}_{\hat{w}}$ with $\hat{w}_i = \sigma^{-2}(x_i; \hat{\theta})$, i=1,...,n.
 - **4** Inference with Eicker-Huber-White covariance for $\widehat{\beta}_{\widehat{w}}$.

Weighted least squares: Survey sampling

Weighted least squares: Survey sampling

Ideal estimator

$$\widehat{\beta}_{\mathsf{ideal}} = \left(\sum_{i=1}^{N} x_i x_i^{\mathsf{T}}\right)^{-1} \sum_{i=1}^{N} x_i y_i.$$

Sampling probability

$$I_i = \mathbb{I}\{$$
unit *i* is included in the sample $\}, \quad \pi_i = \mathbb{P}(I_i = 1 \mid X_i, y_i).$

► Horvitz and Thompson (1952) inverse probability weighting (IPW)

$$\widehat{\beta}_{\text{IPW}} := \left(\sum_{i=1}^{N} \frac{I_i}{\pi_i} x_i x_i^{\mathsf{T}}\right)^{-1} \sum_{i=1}^{N} \frac{I_i}{\pi_i} x_i y_i = \left(\sum_{j=1}^{n} \pi_j^{-1} x_j x_j^{\mathsf{T}}\right)^{-1} \sum_{j=1}^{n} \pi_j^{-1} x_j y_j.$$

 $\mathbb{E}\left[\frac{I_i}{\pi_i} \mid x_i, y_i\right] = 1.$

Some tricks of the trade: transformations of outcome and covariates.
Transform of the outcome: \log

For $y_i > 0$,

$$\log y_i = x_i^{\mathsf{T}}\beta + \varepsilon_i.$$

- ► Would do you interpret it?
- ▶ When $y_i \sim \mathcal{N}(\mu_i, \sigma^2 \mu_i^2)$, where

 $sd(y_i) \propto \mathbb{E} y_i$,

then it is a good idea to take \log transform:

$$\log y_i - \log \mu_i \approx (y_i - \mu_i)/\mu_i \sim \mathcal{N}(0, \sigma^2).$$
 (why?)

 \square e.g., y_i is the time that runner *i* takes to finish distance μ_i

▶ When $y \ge 0$, $\log(y_i + 1)$ is used frequently.

🖙 e.g., gene expression

Transform of the outcome: Box-Cox

George Box and Sir David Cox (1964) consider a family of transformations on y:

$$g_\lambda(y) = egin{cases} (y^\lambda - 1)/\lambda, & \lambda
eq 0 \ \log y, & \lambda = 0 \end{cases}.$$

► $Y_{\lambda} = (g_{\lambda}(y_1), \dots, g_{\lambda}(y_n))^{\mathsf{T}} \sim \mathcal{N}(X\beta, \sigma^2 I_n)$ yields likelihood $L(\beta, \sigma^2, \lambda; Y)$.

▶ Draw profile log-likelihood $I_p(\lambda) = \log L(\hat{\beta}(\lambda), \hat{\sigma}^2(\lambda), \lambda; Y)$ and construct 95% CI for λ around the maximizer $\hat{\lambda}$ based on

$$2(I_P(\widehat{\lambda}) - I_P(\lambda)) \rightarrow_d \chi^2(1).$$

Transform of the covariates: regression discontinuity and kink

Transform of the covariates: regression discontinuity and kink

• Testing H_0 : no treatment effect boils down to testing

 H_0 : regression is continuous (i.e. a kink) at x = c. $\iff \beta_3 = 0$ in

$$y_i = \begin{cases} \beta_1 + \beta_2(x_i - c) + \varepsilon_i, & x_i \leq c\\ (\beta_1 + \beta_3) + (\beta_2 + \beta_4)(x_i - c) + \varepsilon_i, & x_i > c. \end{cases}$$

▶ This piecewise linear model can be parameterized as a linear model

 $y_i = \beta_1 + \beta_2(x_i - c) + \beta_3 \mathbb{I}(x_i > c) + \beta_4 (x_i - c) \mathbb{I}(x_i > c) + \varepsilon_i$

Similarly, we can test H'_0 : no kink using $R_c(x_i) := \max(0, x_i - c)$:

$$y_i = \beta_1 + \beta_2 R_c(x_i) + \beta_3(x_i - c) + \varepsilon_i,$$

where $H'_0 \iff \beta_2 = 0$.

BIOST/STAT 533, Sp 2024 Theory of Linear Models

Richard Guo

Lecture # 15: Final Review

Final Exam

Monday June 3: 2:30 – 4:20 PM, this classroom. Open notes / books. No electronics. Covers the whole course.

Covered: Before midterm

- 1 Linear algebra: column space, orthogonal matrix, eigendecomposition, projection
- 2 OLS: algebra and geometry
- **3** <u>GM</u> model, RSS, $\hat{\sigma}^2$, Gauss-Markov theorem
- 4 \underline{GM} - \mathcal{N} model, pivotal t and F inference
- 5 <u>Hetero</u> model, consistency and asymptotic normality of $\widehat{\beta}$
- 6 Eicker-Huber-White covariance estimation
- 7 Long and short regressions; Frisch-Waugh-Lovell theorem; QR decomposition

Covered: After midterm

- ANOVA (and its equivalence to Wald test); one-way and two-way ANOVA; ANOVA with parameters under constraints; degrees of freedom
- 2 Orthogonal decomposition of RSS and variance; R^2
- 3 Cochran's formula; omitted variable bias
- 4 Leverage; leave-one-out; predicted residuals; diagnostic plots
- 5 Misspecified linear model and its interpretation; population OLS; inference for the population OLS
- 6 Overfitting; bias-variance tradeoff; mean squared prediction error; Mallow's C_p ; AIC and BIC; model selection
- 7 Generalized least squares; weighted least squares

OLS Model checking and selection

Gauss-Markov

<u>GM</u> We have $Y = X\beta + \varepsilon$ with

1) X is fixed and has linearly independent columns,

2
$$\mathbb{E} \varepsilon = \mathbf{0}$$
, cov $\varepsilon = \sigma^2 I_n$.

The unknown parameters are (β, σ^2) .

Service and the service of the servi

OLS is BLUE under <u>GM</u>.

<u>GM-Generalized</u> (aka. Aitkin model) We have $Y = X\beta + \varepsilon$, where

1 X is fixed and has linearly independent columns,

2
$$\mathbb{E} \varepsilon = \mathbf{0}$$
, cov $\varepsilon = \sigma^2 \Sigma$.

The unknown parameters are (β, σ^2) ; Σ is a known positive definite matrix.

GLS is BLUE under <u>GM-Generalized</u>.

OLS Model checking and selection

Gauss-Markov-Normal

<u>GM-</u> \mathcal{N} We have $Y = X\beta + \varepsilon$ with

1) X is fixed and has linearly independent columns,

2
$$\varepsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 I_n).$$

The unknown parameters are (β, σ^2) .

Inference:

$$T_{c} := \frac{c^{\mathsf{T}}\widehat{\beta} - c^{\mathsf{T}}\beta}{\sqrt{\widehat{\sigma}^{2}c^{\mathsf{T}}(X^{\mathsf{T}}X)^{-1}c}} \sim t_{n-p}.$$
$$F_{C} := \frac{(C\widehat{\beta} - C\beta)^{\mathsf{T}} \left\{ C(X^{\mathsf{T}}X)^{-1}C^{\mathsf{T}} \right\}^{-1} (C\widehat{\beta} - C\beta)}{l\widehat{\sigma}^{2}} \sim F_{l,n-p}.$$

Prediction:

$$\frac{y_{n+1} - x_{n+1}^{\mathsf{T}}\widehat{\beta}}{\sqrt{\widehat{\sigma}^2 + \widehat{\sigma}^2 x_{n+1}^{\mathsf{T}} (X^{\mathsf{T}} X)^{-1} x_{n+1}}} \sim t_{n-p}.$$

Errors are iid.

Gauss-Markov-Normal

▶ Question: For $Y = X\beta + \varepsilon$, Under <u>GM-N</u>, how would you test $\beta_1 = 0$?

OLS Model checking and selection

Lemma We have

$$(X^{\mathsf{T}}X)^{-1} = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix},$$
where

$$S_{11} = (X_1^{\mathsf{T}}X_1)^{-1} + (X_1^{\mathsf{T}}X_1)^{-1}X_1^{\mathsf{T}}X_2(\widetilde{X}_2^{\mathsf{T}}\widetilde{X}_2)^{-1}X_2^{\mathsf{T}}X_1(X_1^{\mathsf{T}}X_1)^{-1},$$

$$S_{12} = -(X_1^{\mathsf{T}}X_1)^{-1}X_1^{\mathsf{T}}X_2(\widetilde{X}_2^{\mathsf{T}}\widetilde{X}_2)^{-1},$$

$$S_{21} = S_{12}^{\mathsf{T}},$$

$$S_{22} = (\widetilde{X}_2^{\mathsf{T}}\widetilde{X}_2)^{-1}.$$

OLS Model checking and selection

Heteroskedastic linear model

Hetero We have $Y = X\beta + \varepsilon$, $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n)^{\mathsf{T}}$, where **1** X is fixed and has linearly independent columns. 2 ε_i 's are independent with $\mathbb{E} \varepsilon_i = 0$, var $\varepsilon_i = \sigma_i^2$ The unknown parameters are $(\beta, \sigma_1^2, \ldots, \sigma_n^2)$. Errors are independent. Theorem Consider Hetero model. Under (A1) (good limits) $B_n := n^{-1} \sum_{i=1}^n x_i x_i^{\mathsf{T}} \to B$ (full rank), $M_n := n^{-1} \sum_{i=1}^n \sigma_i^2 x_i x_i^{\mathsf{T}} \to M$ (A2) (moment condition) $d_{2+\delta,n} := n^{-1} \sum_{i=1}^n ||x_i||^{2+\delta} \mathbb{E} |\varepsilon_i|^{2+\delta} < C$ for $\delta > 0$, C > 0, $\sqrt{n}(\widehat{\beta} - \beta) \rightarrow_d \mathcal{N}(\mathbf{0}, B^{-1}MB^{-1}).$

9/20

Eicker-Huber-White

Theorem Consider <u>Hetero</u> model. Suppose it holds that

(A1) (good limits)
$$B_n := n^{-1} \sum_{i=1}^n x_i x_i^\mathsf{T} \to B$$
 (full rank), $M_n := n^{-1} \sum_{i=1}^n \sigma_i^2 x_i x_i^\mathsf{T} \to M.$

We have

$$\widehat{\Sigma}_n = B_n^{-1} \widehat{M}_n B_n^{-1} \to_p B^{-1} M B^{-1} = \Sigma$$

if the following (A3) (extra moment condition) holds:

$$n^{-1}\sum_{i} \operatorname{var}(\varepsilon_{i}^{2}) x_{i,j_{1}}^{2} x_{i,j_{2}}^{2}, \quad n^{-1}\sum_{i} x_{i,j_{1}} x_{i,j_{2}} x_{i,j_{3}} x_{i,j_{4}}, \quad n^{-2}\sum_{i} \sigma_{i}^{2} x_{i,j_{1}}^{2} x_{i,j_{2}}^{2} x_{i,j_{3}}^{2}$$

are bounded above by some constant C for all n and every $j_1, j_2, j_3, j_4 \in \{1, \dots, p\}$.

OLS Model checking and selection

Eicker-Huber-White

Logic of Eicker–Huber–White:

- ${\rm I\!I}$ Write $\widehat{\beta}$ as a function of the random response
- 2 Derive the covariance of $\widehat{\beta}$ sandwich form
- 3 Estimate each piece

Review: Gram–Schmidt and QR

Corollary (under orthogonality) When $X_1^{\mathsf{T}}X_2 = 0$, i.e., $\mathcal{C}(X_1) \perp \mathcal{C}(X_2)$, we have

 $\widetilde{X}_2 = X_2,$

$$\widehat{eta}_2$$
 from $Y \sim X_1 + X_2 \,=\, \widetilde{eta}_2$ from $Y \sim X_2.$

$$\begin{split} X &= (X_1, \dots, X_p) \\ &= (U_1, \dots, U_p) \begin{pmatrix} 1 & \widehat{\beta}_{X_2|U_1} & \widehat{\beta}_{X_3|U_1} & \dots & \widehat{\beta}_{X_p|U_1} \\ 0 & 1 & \widehat{\beta}_{X_3|U_2} & \dots & \widehat{\beta}_{X_p|U_2} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix} \\ &= Q \operatorname{diag}(\|U_1\|, \dots, \|U_p\|) \begin{pmatrix} 1 & \widehat{\beta}_{X_2|U_1} & \widehat{\beta}_{X_3|U_1} & \dots & \widehat{\beta}_{X_p|U_1} \\ 0 & 1 & \widehat{\beta}_{X_3|U_2} & \dots & \widehat{\beta}_{X_p|U_2} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix} = Q R. \end{split}$$

OLS and population OLS

OLS As an algebraic operation on data $X \in \mathbb{R}^{n \times p}$, $Y \in \mathbb{R}^{n}$,

$$\widehat{\beta} = \underset{b}{\arg\min} \|Y - Xb\|^2 = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}Y.$$

We have orthogonal decomposition

Orthogonal in what sense?

$$Y = \widehat{Y} + \widehat{\varepsilon} = HY + (I - H)Y.$$

Population OLS As an approximation to P(X, Y) of random $X \in \mathbb{R}^p$, $Y \in \mathbb{R}$,

$$\beta = \arg\min_{b} \mathbb{E} \|Y - X^{\mathsf{T}}b\|^{2} = \mathbb{E}(XX^{\mathsf{T}})^{-1} \mathbb{E}[XY]$$

Solution How do we interpret β ?

Orthogonal in what sense?

We have orthogonal decomposition

$$Y = \beta^{\mathsf{T}} X + \varepsilon.$$

OLS and population OLS: FWL theorems

OLS FWL Suppose X has linearly independent columns. Consider long regression

$$Y = X_1 \widehat{\beta}_1 + X_2 \widehat{\beta}_2 + \widehat{\varepsilon}.$$

Population OLS FWL Consider a population OLS III What does this equation mean?

$$Y = X_1^{\mathsf{T}}\beta_1 + X_2^{\mathsf{T}}\beta_2 + \varepsilon.$$

▶ β equals population OLS $Y \sim \widetilde{X}_2$ and $\widetilde{Y} \sim \widetilde{X}_2$. ▶ ε equals the residual from $\widetilde{Y} \sim \widetilde{X}_2$ almost surely. ■ ε How do you partial out X_1 ?

OLS and population OLS: FWL theorems

• Question: Consider a fixed design $X : n \times p$ with linearly independent columns. Let $Z : n \times (p-1)$ be X without the last column.

For a random response vector $Y \in \mathbb{R}^n$, let

$$\widehat{\beta}_X := \argmin_b \|Y - Xb\|^2, \quad \widehat{\beta}_Z := \operatornamewithlimits{\arg\min}_{b: \mathsf{last entry of } b \text{ is zero}} \|Y - Xb\|^2.$$

- **1** What are $\widehat{\beta}_X$ and $\widehat{\beta}_Z$ in closed form?
- 2 Which gives a higher R^2 ?
- **3** For fitted values, is it true that $\|\widehat{Y}_Z\| \le \|\widehat{Y}_X\|$?
- 4 Is it true that $\operatorname{var}(\widehat{\beta}_Z)_1 \leq \operatorname{var}(\widehat{\beta}_X)_1$?

FWL theorem and Cochran's formula

FWL: Get long regression coefficients from a partialled-out short regression.

FWL theorem and Cochran's formula

• Question: When do you have $\widehat{\beta}_2 = \widetilde{\beta}_2$?

Multiple correlation coefficient R^2

Consider $Y \sim 1 + X$, where $X : n \times (p - 1)$ and $(1_n, X)$ has linearly independent columns. Recall variance decomposition:

Multiple correlation coefficient

$$\mathcal{R}^2 = (ext{var} ext{ explained } \%) = rac{\sum_i (\widehat{y_i} - ar{y})^2}{\sum_i (y_i - ar{y})^2}.$$

B

RSS =
$$(1 - R^2) \sum_{i} (y_i - \bar{y})^2$$
.

Leverage and Leave-one-out

Leverage of *i*-th observation:

$$h_{ii} = (X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}})_{ii} = x_i^{\mathsf{T}}(X^{\mathsf{T}}X)^{-1}x_i.$$

► LOO predicted residual:

$$\widehat{\varepsilon}_{[-i]} = \widehat{\varepsilon}_i / (1 - h_{ii}).$$

Question: Under <u>GM</u>,

$$\operatorname{var} \widehat{\varepsilon}_i = ?$$
 $\operatorname{var} \widehat{\varepsilon}_{[-i]} = ?$

Model selection

• Mallow's
$$C_p = \|Y - \widehat{Y}\|^2 + 2p\sigma^2$$

unbiased estimate of MSPE (mean squared prediction error)

$$\mathsf{AIC} = n \log \frac{\mathrm{RSS}}{n} + 2p$$

For selecting model with small prediction error

$$\mathsf{BIC} = n \log \frac{\mathrm{RSS}}{n} + p \log n$$

For selecting the true model, when the linear model holds