Minimal Enumeration of All Possible Total Effects in a Markov Equivalence Class

- Causal inference from observational data
- Underlying causal DAG \mathscr{D} is known up to a refined Markov equivalence class, represented by MPDAG \mathscr{G}
- Effect of A on Y is unidentified from $\mathcal G$
- Goal: Report the set of possible effects of A on Y

Identification condition

A total effect is identified given an equivalence class of DAGs if it can be expressed as a functional of the observed distribution, which is the same for all DAGs in the equivalence class

Theorem 1 (Perković 2010) The total effect of A on Y is identified in MPDAG \mathscr{G} if and only if every proper possibly causal path from A to Y starts with a directed edge in \mathscr{G} .

Example 1

(a) MPDAG \mathscr{G} , (b) all DAGs represented by \mathscr{G} , (c) all MPDAGs with distinct parent sets of A represented by \mathscr{G} , (d) all MPDAGs with distinct functionals $P(Y|\operatorname{do}(A))$ represented by \mathscr{G} .

F. Richard Guo and Emilija PerkovićDepartment of StatisticsUniversity of Washington, Seattle

Main results

Theorem 2 Let \mathscr{G} be a causal MPDAG. Let A and Y be disjoint node sets in \mathscr{G} such that the total effect of A on Y is not identified given \mathscr{G} . Suppose $p = \langle A_1, V_1, \dots, Y_1 \rangle$ for $A_1 \in A$, $Y_1 \in Y$ is a **shortest** proper possibly causal path from A to Y such that $A_1 - V_1$. Then the total effect of A on Y is not identified in any MPDAG \mathscr{G}^* that is represented by \mathscr{G} and contains the undirected edge $A_1 - V_1$.

IDGraphs Algorithm

Input: MPDAG \mathcal{G} , disjoint node sets A and Y

Output: the minimal set of MPDAGs with identified effects that partition ${\mathscr G}$

- 1. Pick $A_1 V_1$ such that $A_1 \in A$ and A_1, V_1, \dots, Y is a **shortest** proper possibly causal path from A to Y.
- 2. Let $\mathscr{G}_1 \leftarrow \mathsf{MPDAG}(\mathscr{G}, A_1 \to V_1)$ and $\mathscr{G}_2 \leftarrow \mathsf{MPDAG}(\mathscr{G}, A_1 \leftarrow V_1)$
- 3. Recurse on \mathcal{G}_1 and \mathcal{G}_2 until identified.

Theorem 3 Suppose \mathscr{G} is a causal MPDAG and A, Y are two disjoint node sets in \mathscr{G} . Let $L = \{\mathscr{G}_1, \dots, \mathscr{G}_n\}$ be the output of **IDGraphs**(A, Y, \mathscr{G}). Then the following statements hold.

- 1. The total effect of A on Y is identified in each \mathscr{G}_i .
- 2. For any $i \neq j$, there exists an observational density f that is consistent with \mathscr{G} such that the effect identified from f in \mathscr{G}_i is different from the effect identified from f in \mathscr{G}_j .
- 3. *L* is a partition of \mathcal{G} in terms of DAGs represented.

Orienting the shortest path first

Non-minimal: A - B is oriented first.

Comparison

	Comp. Cost	A =1	A > 1	Minimal
laive - Enumerate all DAGs:				
global IDA (Maathuis et al, 2009)	$\mathcal{O}(V !)$	\checkmark		No
global joint IDA (Nandy et al, 2017)	$\mathcal{O}(V !)$	\checkmark	\checkmark	No
numerate valid parent sets of A:				
OCAL IDA (Maathuis et al, 2009, Fang & He, 2020)	$\mathcal{O}(2^{l(\mathcal{G})})$	\checkmark		No
semi-local IDA, joint IDA (Nandy et al, 2017)	$\mathcal{O}(2^{l(\mathcal{G})} poly(V))$	\checkmark	\checkmark	No
optimal IDA (Witte et al, 2020)	$\mathcal{O}(2^{l(\mathcal{G})} poly(V))$	\checkmark	\sim	Yes
num. $A-$ on poss. causal paths to Y:				
collapsible IDA (Liu et. al, 2020)	$\mathcal{O}((V + E)2^{r(\mathcal{G})})$	\checkmark	-	No
Recursively enum. shortest path first				
ID Graphs (Guo & Perković)	$\mathcal{O}(2^{m(\mathcal{G})} poly(V))$	\checkmark	\checkmark	Yes

Note: $m(\mathcal{G}) \leq r(\mathcal{G}) \leq l(\mathcal{G})$.

Simulations

Example 2 Data is simulated from linear causal model with Gaussian error.

Random instances \mathscr{D} is drawn from an Erdős–Rényi ensemble.

• We consider graphs p = 10 and p = 50, where the average degree k is drawn from $\{2, ..., 8\}$ for the former and $\{2, ..., 45\}$ for the latter.

- We take ${\mathscr G}$ to be the CPDAG of ${\mathscr D}.$

• Treatment variables A and outcome Y are randomly selected such that the total effect is unidentified in \mathcal{G} . The size of A varies from 1 to 4.

• For each instance, the possible effects of A on Y are estimated given \mathcal{G} and 500 independent samples generated by a corresponding linear causal model.

For more details: https://bit.ly/20USIGL