Minimal Enumeration of All Possible Total Effects

iIn a Markov Equivalence Class

e Causal inference from observational data

e Underlying causal DAG & is known up to a refined
Markov equivalence class, represented by MPDAG &

e Effect of Aon Y is unidentified from &

e Goal: Report the set of possible effects of Aon 'Y
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|dentification condition

A total effect is identified given an equivalence class of DAGs if it can be
expressed as a functional of the observed distribution, which is the same for
all DAGs in the equivalence class

Theorem 1 (Perkovi¢ 2010) The total effect of Aon Y is identified in MPDAG &
if and only if every proper possibly causal path from A to Y starts with a directed
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(a) MPDAG €, (b) all DAGs represented by &, (c) all MPDAGs with distinct parent
sets of A represented by &, (d) all MPDAGs with distinct functionals P(Y | do(A))
represented by &.
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Main results

Theorem 2 Let & be a causal MPDAG. Let A and Y be disjoint node sets in
&'such that the total effect of A on Y is not identified given &.

Suppose p = (A, V,,...,Y;) forA; € A, Y, € Yis a shortest proper
possibly causal path from Ato Y such that A; — V.

Then the total effect of A on Y is not identified in any MPDAG &* that is
represented by & and contains the undirected edge A; — V.

IDGraphs Algorithm
Input: MPDAG &, disjoint node sets A and Y

Output: the minimal set of MPDAGs with identified effects that partition &

1.Pick A; — V; suchthatA; € Aand A, V,, ..., Yis a shortest proper
possibly causal path from A to Y.

2.Let &, < MPDAG(%,A; — V|)and &, < MPDAG(G,A,; « V))

3. Recurse on &, and &, until identified.

Theorem 3 Suppose & is a causal MPDAG and A, Y are two disjoint node

setsin @.LetL = {¥&,, ..., &, } be the output of IDGraphs(A, Y, ).

Then the following statements hold.

1. The total effect of A on Y is identified in each & .

2. For any i # J, there exists an observational density f that is consistent with
& such that the effect identified from fin & is different from the effect
identified from fin &

3. L is a partition of & in terms of DAGs represented.

Orienting the shortest path first

)%
A E—®
0 .' ‘ @ G

0

N P 1 OT0 . @—©
o |
A—)
. ®—© (A—(Y)
A—(Y)
Non-minimal; A - B is oriented first. Minimal: A - C is oriented first.
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&
Comparison
Comp. Cost Al=1 |A|>1 Minimal
Naive - Enumerate all DAGs:
global IDA (Maathuis et al, 2009) o(|V|") \/ = No
global joint IDA (Nandy et al, 2017) o(|V|!) v v No
Enumerate valid parent sets of A:
local IDA (Maathuis et al, 2009, Fang & He, 2020) 0(2/9)) v - No
semi-local IDA, joint IDA (Nandy et al, 2017) 029 poly(|V))) v v No
optimal IDA (witte et al, 2020) 029 poly(|V))) v ~ Yes
Enum. A— on poss. causal paths to Y:
collapsible IDA (Liu et. al, 2020) O((|V|+|E|)279)) v - No
Recursively enum. shortest path first
IDGraphs (Guo & Perkovi) O (2™ 9 poly(|V])) v v Yes

Note: m(%) < r(%) < I(¥).

Simulations

Example 2 Data is simulated from linear causal model with Gaussian error.
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DAG 9 CPDAG & of & IDGraphs(A;, ¥, &) IDGraphs({A, A}, Y, ©)
A1 onY (See(c) A1,A2 onY (See(d)

true effect 3 (2,1)
true possible effects {3, 2, 1.8, 0} {(2,1), (3,0), (0,2), (0,0)}
our method {2.9, 2.1, 1.9, 0} {(2.1,0.9), (2.9,0), (0,1.9), (0,0)}
IDA (optimal) (Witte et al., 2020)  {2.9, (2.1)3, 1.9, 0} {(2.1,0.9)°, (0,0)?, (NA,NA)?}
IDA (local) (Maathuis et al., 2009) {2.9, 2.1, 2.2, 1.9, 0} —
joint-IDA (Nandy et al., 2017) . {(2.1,0.9)2, (2.2,0.9), (1.9,1.1), (2.2,1.1)2,

(0,1.9), (2.9,0), (0,0)%}

Random instances & is drawn from an Erdés—Rényi ensemble.

.- We consider graphs p = 10 and p = 50, where the average degree k is drawn from
{2,...,8 }for the former and {2,...,45 }for the latter.

.- We take & to be the CPDAG of &.

. Treatment variables A and outcome Y are randomly selected such that the total effect is
unidentified in &. The size of A varies from 1 to 4.

. For each instance, the possible effects of A on Y are estimated given & and 500 independent
samples generated by a corresponding linear causal model.
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For more details: https://bit.ly/20USIGL



