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Overview

A zoo of graphical models (non-causal or causal) and a myriad of acronyms:
e ADMG
* PAG
* MAG

DAG

chain graph

CPDAG

UG

ancestral graph

factor graph

path diagram
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Overview
For this quick intro, we shall focus on DAG and its variant ADMG (aka DAG with
latents).

1 DAG as a probability model
2 DAG as a causal model
3 DAG as a tool for practitioners
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DAG as a probability model
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DAG

A graph G that consists of
® vertices V,
® directed edges E

such that there is no directed cycle.
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DAG

» Pa(D) ={B, C}

» Ch(A) ={B,C}

» A— B — D — E is a directed path A € An(E) and E € De(A)
» A and B are adjacent
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DAG

» Pa(D) ={B, C}

» Ch(A) ={B,C}

» A— B — D — E is a directed path A € An(E) and E € De(A)
» A and B are adjacent

» Topological ordering: A< B < C < D < E (not unique) such that
i and j are adjacent with i < j — | — .
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15 Associate every vertex with a random variable. B State space can be {0,1}, R or anything
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Probability model

1= Associate every vertex with a random variable.

Then a DAG G = (V, E) is associated with

» State space can be {0,1}, R or anything

Mg :={P : p(V) factorizes according to G}

—{P:p(V)—

I p(v | Pa(V))}'

vev

» Bayesian network. B semiparametric model
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Probability model

1z Associate every vertex with a random variable. » State space can be {0,1}, R or anything
Then a DAG G = (V, E) is associated with

Mg :={P : p(V) factorizes according to G}

_ {p (V) = ] olv | Pa(v»}.

vev

» Bayesian network. B semiparametric model

@ (D—®

) p(A, B, C,D,E) = p(A) p(B | A)p(C | A)p(D | B, C) p(E | D)
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Equivalent description: NPSEM-IE

P(A, B, C,D,E) = p(A)p(B | A)p(C | A)p(D | B,C) p(E | D).
is equivalent to positing a nonparametric structural equation model with independent errors

(NPSEM-IE): )
527 Eba Ec, Ed, Ee N~ unlf(o, 1)

A= f,(ea)

B = (A, ep)
C= fc(Avgc)

D = fy(B, C,eyq)
E=f(D,ec)
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Constraints: missing edges

Topological ordering: A< B <C<D<E

p(A) p(B | A)p(C | A)p(D | B, C) p(E | D)

p(A) p(B | A)p(C| A B)p(D|B,C,A)p(E|D,A B,C)

» The full DAG represents any P » the nonparametric model.
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Conditional independence

A DAG G, as a probability model Mg, posits

‘missing edges = conditional independence.
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Conditional independence

A DAG G, as a probability model Mg, posits

‘missing edges = conditional independence.‘

(B)
(A (D—(®
©,

The missing ‘B — C' posits

P(C| A B)=P(C|A) s P(B,C|A) = P(B|AP(C|A).
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Conditional independence

The graph

also implies, e.g.,
AB,CLE|D, ACLE|B,D,

1 How we read off all the Cls a DAG implies ?
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Dependence: mechanisms

Let A, B be the two fair coins.
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Dependence: mechanisms

Let A, B be the two fair coins.

HH, TT, HT, TH with equal prob. <— A1 B

@ ®

ALlB
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Mechanisms of inducing dependence
Let A, B be the two fair coins.

only HH and TT = A L B
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(1) Causal relations

A—® @A—FB ALB
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Mechanisms of inducing dependence
Let A, B be the two fair coins.

only HH and TT = A L B

(1) Causal relations

A—® @A—FB ALB

(2) Common cause (unconditionally)

@
@ B ALB
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Mechanisms of inducing dependence
Let A, B be the two fair coins.

only HH and TT = A L B

(1) Causal relations

A—® @A—FB ALB

(2) Common cause (unconditionally)

@ B ALB

(3) Conditioning on a common effect

(B) ALB|D
®\
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d-connecting path

» A path between A and B: a sequence of distinct, adjacent vertices
A—o—o0¢+---— B,

where every non-endpoint vertex is either a collider (— o «) or a non-collider
(o= 04, —0—)

A path is d-connecting given C if
1 every non-collider ¢ C, and

2 every collider is € C or is an ancestor of C.
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d-separation

Vertex A and vertex B are d-separated by vertex set C, written as A L gB | C, if there
is no d-connecting path between A and B given C.

> Extended to A L gB | C for disjoint vertex sets A, B, C.
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d-separation

Vertex A and vertex B are d-separated by vertex set C, written as A L gB | C, if there
is no d-connecting path between A and B given C.

> Extended to A L gB | C for disjoint vertex sets A, B, C.

@'@

@ ®
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Global Markov property

Global Markov property For disjoint vertex sets A, B, C, it holds that

AlgB|C = ALB|CI[P], PeMg.
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DAG as a Cl model

» The global Markov property also holds reversely. If P satisfies
AlgB|C = ALB|C]|[P]
then P € Mg.
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DAG as a Cl model

» The global Markov property also holds reversely. If P satisfies
AlgB|C = ALB|C]|[P]
then P € Mg.

Theorem Factorization <= Global Markov <= Local Markov.
» Local Markov: P € Mg = A L non-descendants of A | Pa(A)
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DAG as a Cl model

» The global Markov property also holds reversely. If P satisfies
AlgB|C = ALB|C]|[P]
then P € Mg.

Theorem Factorization <= Global Markov <= Local Markov.

» Local Markov: P € Mg = A L non-descendants of A | Pa(A)

i That is, the model defined as Mg := {P : P factorizes according to G} can be
viewed as a Cl model

(P:ALGB|C = ALB|CIP]},

{P : P satisfies Cls that are encoded as d-separations in G}.
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Graphoid axioms

» From a set of Cls, new Cls may be derived, e.g., with applications of ‘graphoid
axioms':

1 Symmetry: ALB|C = BLA|C

2 Decomposition: AL B,D|C = ALB|CandALD|C

3 Weak union: ALB,D|C = ALB|D,C

4 Contractionn ALB|CandALD|B,C = ALB,D|C
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Graphoid axioms

» From a set of Cls, new Cls may be derived, e.g., with applications of ‘graphoid
axioms':

1 Symmetry: ALB|C = BLA|C

2 Decomposition: AL B,D|C = ALB|CandALD|C

3 Weak union: ALB,D|C = ALB|D,C

4 Contractionn ALB|CandALD|B,C = ALB,D|C

i Example Given
ALB, AlC]|B,

we can derive

ALB, ALC|B= ALB,C = ALC.
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Completeness of d-separation

» Question: From the list Cls encoded by d-separations, can we derive a new Cl (e.g.,
with graphoid axioms) that holds for every P € Mg but does not correspond to any
d-separation in the graph? NO!
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Completeness of d-separation

» Question: From the list Cls encoded by d-separations, can we derive a new Cl (e.g.,
with graphoid axioms) that holds for every P € Mg but does not correspond to any
d-separation in the graph? NO!

Theorem For every A, B, C such that A and B are d-connected given C on G, there
exists P € Mg such that

Al B|CI[P]
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Completeness of d-separation

» Why is this important?
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Completeness of d-separation

» Why is this important?

Milan Studeny (1992) showed that Cls cannot be axiomatized by a finite set of rules.
That is, one cannot deduce all the consequences of an arbitrary set {Cly,Clp, ..., Clg}
using a finite number of rules (e.g. graphoid axioms).

= Graphoid axioms are incomplete and cannot be completed, if one is free to specify the
list of Cls.
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Completeness of d-separation

» Why is this important?

Milan Studeny (1992) showed that Cls cannot be axiomatized by a finite set of rules.
That is, one cannot deduce all the consequences of an arbitrary set {Cly,Clp, ..., Clg}
using a finite number of rules (e.g. graphoid axioms).

= Graphoid axioms are incomplete and cannot be completed, if one is free to specify the
list of Cls.

1= However, DAG models are a class of nice Cl models by confining the set of Cls
(reducing complexity).
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Examples over three variables

» V ={AB,C}.
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ALB @\
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Examples over three variables

» V ={AB,C}.

ALlB @\@)

ALB|C

Al B
Al B|C
LBl

BLC|A
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Markov equivalence

» G and G’ are called ‘Markov equivalent’, written as G ~ G’, if they define the same
model.
» i.e., they encode the same Cls.
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Markov equivalence

» G and G’ are called ‘Markov equivalent’, written as G ~ G’, if they define the same
model.

» i.e., they encode the same Cls.

Theorem Two DAGs over the same set of vertices are Markov equivalent iff they
share the same adjacencies and unshielded colliders.
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Markov equivalence

» G and G’ are called ‘Markov equivalent’, written as G ~ G’, if they define the same
model.

» i.e., they encode the same Cls.

Theorem Two DAGs over the same set of vertices are Markov equivalent iff they
share the same adjacencies and unshielded colliders.

» Unshielded collider: B — D <+ C but B, C are not adjacent

(B)
(Al (D—®
©
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Markov equivalence class

» A Markov equivalence class can be represented by an essential graph / CPDAG.
(Without extra assumptions, DAGs can only be learned from data up to Markov equivalence.)

ALB @\»@j @\©

@—(O—®B)
ALB|C

ALB

A leS @—@©

BLC|A
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Parametric case: finite state space

» When every variable only takes finitely many levels, the model can be parametrized in terms
of conditional probability tables {p(A | Pa(A)) : A€ V}.

P(C=T) p(c_r)
0,5

c pm-r) P(R- )
T
/ F 2

P(S=T) P($=F)
0,9
0,5

c
T
F

WetGrass
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Parametric case: finite state space

» When every variable only takes finitely many levels, the model can be parametrized in terms
of conditional probability tables {p(A | Pa(A)) : A€ V}.

P(C=T) p(c_s)
0,5
g P(R-T) P(R-F)
T
/ LE

P(S=T) P($=F)
09

c
T
F 0,5

» Efficient algorithms exist for marginalization and computing posterior probabilities 25 /51
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Parametric case: linear SEM

Each linear equation posits that
Vi = B Pa(Vi) + ¢,

where ¢; is exogenous error (drawn independently).

W @

W = Ew
Z = €
@ 0 X =pwmW +BxZ+ &x
Y =pBuwW 48,7+ ¢
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Parametric case: linear SEM

Each linear equation posits that
Vi = /B,T Pa(Vl) +€j,

where ¢; is exogenous error (drawn independently).

W, 2
X

» Because of acyclicity, it admits a unique solution:

w
V4
X
Y

:ﬁWXW +BZXZ+
:BwyW +/Bzyz+

V=BV+e < V=(I-B) e

26 /51
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Limitation of DAGs

DAGs are not closed (in general) under marginalization and selection.
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Limitation of DAGs

DAGs are not closed (in general) under marginalization and selection.
» Marginalization: Consider V. = O U U for O N U = (), where we only get to observe
P(0O). » U are latent variables

O1 L Oy, O1 4 0Or]O0O3

Q
. 01105, 0,4 0s|0
W @ Ge L On Or L On| O
@@@ (0
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Limitation of DAGs

DAGs are not closed (in general) under marginalization and selection.

» Marginalization: Consider V. = O U U for O N U = (), where we only get to observe

P(0O).

@)
@ 0 @
@é@ /’

» U are latent variables

O1 L Oy, O1 4 0Or]O0O3
O 1L 03, O £03]|0
OQJLO3, Oz,K.O:«;’Ol

i Such a Cl model does not correspond
to any DAG over O.
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DAGs with latent variables

For a DAG over V = O U U,

ancestral graphs

~ =
constraints in P(O) = Cls + ‘Verma' constraints + inequalities

equalities (nested Markov models)
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DAGs with latent variables

For a DAG over V = O U U,

ancestral graphs

~ =
constraints in P(O) = Cls + ‘Verma' constraints + inequalities

equalities (nested Markov models)

i See also Richardson and Spirtes (2002), Richardson (2003), Robin J Evans (2016),
and Richardson, Robin J. Evans, et al. (2023).
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DAG as a causal model

29/51



Overview

DAG as a probability model
DAG as a causal model

DAG as a tool for practitioners

What makes it causal?

We have already seen that a DAG is a probability model as it defines a set of probability
distributions Mg. » P € Mg is an observed distribution over factual random variables.
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distributions Mg. » P € Mg is an observed distribution over factual random variables.

1 What makes it a causal model?
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1 posits the existence of counterfactuals (i.e., potential outcomes),
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variables, and
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What makes it causal?

We have already seen that a DAG is a probability model as it defines a set of probability
distributions Mg. » P € Mg is an observed distribution over factual random variables.

1 What makes it a causal model?

» It must be augmented with extra semantics that
1 posits the existence of counterfactuals (i.e., potential outcomes),

2 makes assumptions about factual (e.g., Y) and counterfactual (e.g., Y(a))
variables, and

3 connects the counterfactual distributions with the observed distribution.
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Sampling from a DAG

(B)
A (D—(®
©,

Following the topological ordering A< B < C < D < E,

1 Draw A~ P(A)

2 Draw B ~ P(B | A), C ~ P(C | A)
3 Draw D~ P(D | B, C)

4 Draw E ~ P(E | D)
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Alternative sampling (1): one-step-ahead counterfactuals

G 53 S 2 Die.0)] [$——(Ew)
@] [

» Single-World Intervention Graph (SWIG) (Richardson and J. M. Robins, 2013)
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Alternative sampling (1): one-step-ahead counterfactuals

@ [53 — Die0)] [——(ew)

» Single-World Intervention Graph (SWIG) (Richardson and J. M. Robins, 2013)
1 Draw A ~ P(A)
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Alternative sampling (1): one-step-ahead counterfactuals

@ [53 — Die0)] [——(ew)

» Single-World Intervention Graph (SWIG) (Richardson and J. M. Robins, 2013)
1 Draw A ~ P(A)
2 For every potential a, draw B(a) ~ P(B| A= a), C(a) ~ P(A| A = a) independent of A
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Alternative sampling (1): one-step-ahead counterfactuals

@ [53 — Die0)] [——(ew)

» Single-World Intervention Graph (SWIG) (Richardson and J. M. Robins, 2013)
1 Draw A ~ P(A)
2 For every potential a, draw B(a) ~ P(B| A= a), C(a) ~ P(A| A = a) independent of A

3 For every potential (b, ¢), draw D(b,c) ~ P(D | B = b, C = c¢) independent of previously
drawn.
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Alternative sampling (1): one-step-ahead counterfactuals

@ [53 — Die0)] [——(ew)

» Single-World Intervention Graph (SWIG) (Richardson and J. M. Robins, 2013)
1 Draw A ~ P(A)
2 For every potential a, draw B(a) ~ P(B| A= a), C(a) ~ P(A| A = a) independent of A

3 For every potential (b, ¢), draw D(b,c) ~ P(D | B = b, C = c¢) independent of previously
drawn.

4 For every potential d, draw E(d) ~ P(E | D = d) independent of previously drawn.
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Alternative sampling (1): one-step-ahead counterfactuals

» This is called ‘single-world" because we only posit that
A L B(a),C(a) forevery a

and
B(a)~P(B|A=a), C(a)~P(C|A=a) foreverya.
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Alternative sampling (1): one-step-ahead counterfactuals

» This is called ‘single-world" because we only posit that
A L B(a),C(a) forevery a

and
B(a)~P(B|A=a), C(a)~P(C|A=a) forevery a.

» Refrain from making ‘cross-world" statements such as
A I B(a),B(d"),B(a"), C(a), C(a'), C(a")

because we will never see B(a) and B(a’) together for a # a'.
= Cross-world assumptions cannot be empirically verified.

33/51



Overview

DAG as a probability model
DAG as a causal model

DAG as a tool for practitioners

Alternative sampling (1): one-step-ahead counterfactuals

» This is called ‘single-world" because we only posit that
A L B(a),C(a) forevery a

and
B(a)~P(B|A=a), C(a)~P(C|A=a) forevery a.

» Refrain from making ‘cross-world" statements such as
A I B(a),B(d"),B(a"), C(a), C(a'), C(a")

because we will never see B(a) and B(a’) together for a # a'.

= Cross-world assumptions cannot be empirically verified.

» Nevertheless, we can empirically examine A L B(a), C(a), if we can observe the naturally
occurring value of A immediately before we intervene on it.
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Alternative sampling (I): recursive substitution

@ @?@

To generate the observed, factual variables,

1 A=A,

2 B=B(A), C=C(A),
3 D=D(B,C),

4 E=E(D).

» Apparently, (A,B,C,D,E) ~ P
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Alternative sampling (I11): intervention

= Suppose that we intervene on B and set it to b’ — imposes input to B's children.
b/

@ Coiea)] [F—w) G )

B(b’) - B(A(b’)) — B(A), C(b') = C(A(K)) = C(A)
» B(b') is the naturally occurring value of B immediately before it is intervened on
D(b') = D(b', C(b)),

E(b) = E(D(V')).

N =

S~ 0w
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Alternative sampling (l11): intervention

1= Suppose that we intervene on B and set it to b’ — imposes input to B'’s children.
:)
1 A(b) =

2 B(Y) = B(A(b')) = B(A), C(b') = C(A(Y)) = C(A)
» B(b') is the naturally occurring value of B immediately before it is intervened on
3 D(b')=D(b,C(b")),
4 E(b')=E(D(b)).
» This defines the distribution of P((A, B, C, D, E)(b')), or P(A,B,C,D, E | do(B = b')).
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Alternative sampling: the causal model

i This set of semantics defines the FFRCISTG / SWIG causal model associated with
a DAG G.

» ‘Finest Fully Randomized Causally Interpreted Structured Tree Graph' (J. Robins, 1986)

i |t makes weaker assumptions than Pearl's NPSEM-IE (nonparametric structural
equation model with independent errors) causal model.
» Even though NPSEM-IE and DAG define the same probability model!
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g-formula

With the semantics just described, the counterfactual distribution is

P(A(b)=a,B(b)=b,C(t')=c,D(b)=d, E(b)=e) =
P(A=a)P(B=b|A=a)P(C=c|A=a)P(D=d|B=b,C=c)P(E=e|D=e).

» This is identified from the observed distribution P because every one-step-ahead
conditional is identified from P.
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With the semantics just described, the counterfactual distribution is

P(A(b)=a,B(b)=b,C(t')=c,D(b)=d, E(b)=e) =
P(A=a)P(B=b|A=a)P(C=c|A=a)P(D=d|B=b,C=c)P(E=e|D=e).

» This is identified from the observed distribution P because every one-step-ahead
conditional is identified from P.

g-formula

VI

P(V(a) =v) = H P(v; | aPa(i)NA; VPa(i)\A)
i=1

» From this we can identify counterfactual means, etc.
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g-formula

» Example
EE(L)= Y eP(A=a)P(B=b|A=a)P(C=c|A=a)

a,b,c,d,e
xP(D=d|B="b,C=c)P(E=e|D=4d)
=Y E[E|D=d|P(D=d|B=1,C=c)P(C=c)
d,c
=Y E[E|D=d,B=b,C=c]P(D=d|B=b,C=c)P(C=c) (why?)

d,c
38/51
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(B)
(A (D—®
©

EE(L)=Y Y E[E|D=d,B=b,C=cP(D=d|B=1,C=c)P(C=c)
c d
=Y E[E|B=1,C=c]P(C=c)

=E{E[E|B=4b,C=c]}.

» Backdoor/adjustment formula that adjusts for C
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Backdoor/adjustment

Suppose A is the treatment and Y is the outcome.
> A set of variables § C V \ {A, Y} is a valid adjustment set if
P(Y(a) =y) =E{P(Y =y[A=aS)}

under the SWIG causal model associated with G.

Theorem S is a valid adjustment set if it satisfies the backdoor criterion:

1 S contains no descendant of A,

2 No d-connecting path between A and Y given S with an arrowhead into A.
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Backdoor/adjustment

» ldentifying P(E(b')).

(B)
@ (D—(®
©

» Valid adjustment sets:
{ct, {AhL {ACh

i Adjusting for {C} is the most efficient (Henckel et al., 2022; Rotnitzky and Smucler, 2020).
» A different, but more efficient estimator uses C, D (Guo, Perkovi¢, et al., 2023).
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In the presence of latent variables

» For a DAG with latent variables U, we can use latent projection to obtain an ADMG (acyclic
directed mixed graph) over observed variables.

1 Whenever there is a path of the form W—@— - >@—O 33 ®—® (if

not already present).

2 Whenever there is a path of the form We—@— - >@—0O add W<—Q©
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In the presence of latent variables

» For a DAG with latent variables U, we can use latent projection to obtain an ADMG (acyclic
directed mixed graph) over observed variables.

1 Whenever there is a path of the form W—@— - >@—O 33 ®—® (if

not already present).

2 Whenever there is a path of the form We—@— - >@—0O add W<—Q©

Uy
L)
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Front-door formula

Fw—w Gl M) [

Front-door formula

EY(m)
EY(a)=Y E{E[Y |M=mA}xP(M=m|A=a).
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Front-door formula

e @ ) )

P(Y(a) = y) = P(Y(M(a)) = y)
=Y P(Y(M(a)) = y | M(a) = m) P(M(a) = m) (why?)

= 3" P(Y(m) =y | M(2) = m) P(M(3) = m)
= 3" P(Y(m) = y) P(M(a) = m) (why?)

=Y {Z P(Y=y|M=mA=2a)P(A= a’)} P(M(a)=m|A=a) (why?)

:Z{ZP(YZYM=m,A:a')P(A=a')}P(M=mA:a).
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Identification in the presence of latent variables

» Not all (single-world) counterfactual quantities are identified.

» The ID algorithm due to Jin Tian provides a complete solution.
» See also Shpitser and Pearl (2006), Richardson, Robin J. Evans, et al. (2023, §4.3).
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Use of DAGs in practice

Practitioners can use DAGs/ADMGs to

1 ldentify and communicate biases (confounding, selection). (yes!)
e.g., when there is a time-varying confounder

A1
2 ldentify a causal quantity of interest and consider its estimation. (to some
extent)
3 Design an observational study. (largely open)
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Challenges

1 Results strongly rely on the DAG model being correctly specified.
2 Often difficult to confidently specify (or learn) a DAG for applications.

3 Sophisticated forms of nonparametric identification require detailed assumptions
that are often difficult to justify in practice.

4 Drawing a DAG can be a bad idea: unreliable and unnecessary.

5 Model elicitation, robust methods, sensitivity analysis.
» See Guo and Zhao (2023) for an interactive protocol of eliciting an adjustment set.
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