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Overview

A zoo of graphical models (non-causal or causal) and a myriad of acronyms:
• ADMG
• PAG
• MAG
• DAG
• chain graph
• CPDAG
• UG
• ancestral graph
• factor graph
• path diagram

. . .
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Overview

For this quick intro, we shall focus on DAG and its variant ADMG (aka DAG with
latents).

1 DAG as a probability model

2 DAG as a causal model

3 DAG as a tool for practitioners
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DAG

A graph G that consists of

• vertices V ,

• directed edges E
such that there is no directed cycle.
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DAG

A

B

C

D E

▶ Pa(D) = {B,C}
▶ Ch(A) = {B,C}
▶ A→ B → D → E is a directed path A ∈ An(E ) and E ∈ De(A)
▶ A and B are adjacent

▶ Topological ordering: A ≺ B ≺ C ≺ D ≺ E (not unique) such that

i and j are adjacent with i ≺ j =⇒ i → j .
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Probability model

☞ Associate every vertex with a random variable. ▶ State space can be {0, 1}, R or anything

Then a DAG G = (V ,E ) is associated with

MG := {P : p(V ) factorizes according to G}

=

{
P : p(V ) =

∏
v∈V

p(v | Pa(v))

}
.

▶ Bayesian network. ▶ semiparametric model

A

B

C

D E

p(A,B,C ,D,E ) = p(A) p(B | A) p(C | A) p(D | B,C ) p(E | D)
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Equivalent description: NPSEM-IE

A

B

C

D E

p(A,B,C ,D,E ) = p(A) p(B | A) p(C | A) p(D | B,C ) p(E | D).

is equivalent to positing a nonparametric structural equation model with independent errors
(NPSEM-IE):

εa, εb, εc , εd , εe
iid∼ unif(0, 1)

A = fa(εa)

B = fb(A, εb)

C = fc(A, εc)

D = fd(B,C , εd)

E = fe(D, εe)
9 / 51



Overview
DAG as a probability model

DAG as a causal model
DAG as a tool for practitioners

Constraints: missing edges

Topological ordering: A ≺ B ≺ C ≺ D ≺ E

A

B

C

D E p(A) p(B | A) p(C | A) p(D | B,C ) p(E | D)

A

B

C

D E p(A) p(B | A) p(C | A,B) p(D | B,C ,A) p(E | D,A,B,C )

▶ The full DAG represents any P ▶ the nonparametric model.
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Conditional independence

A DAG G, as a probability modelMG , posits

missing edges =⇒ conditional independence.

A

B

C

D E A

B

C

D E

The missing ‘B → C ’ posits

P(C | A,B) = P(C | A) ⇐⇒ B ⊥⊥ C | A ⇐⇒ P(B,C | A) = P(B | A)P(C | A).
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Conditional independence

The graph

A

B

C

D E

also implies, e.g.,
A,B,C ⊥⊥ E | D, A,C ⊥⊥ E | B,D, . . .

☞ How we read off all the CIs a DAG implies ?
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Dependence: mechanisms

Let A, B be the two fair coins.

HH, TT, HT, TH with equal prob. ⇐⇒ A ⊥⊥ B

A B A ⊥⊥ B

13 / 51



Overview
DAG as a probability model

DAG as a causal model
DAG as a tool for practitioners

Dependence: mechanisms

Let A, B be the two fair coins.

HH, TT, HT, TH with equal prob. ⇐⇒ A ⊥⊥ B

A B A ⊥⊥ B

13 / 51



Overview
DAG as a probability model

DAG as a causal model
DAG as a tool for practitioners

Dependence: mechanisms

Let A, B be the two fair coins.

HH, TT, HT, TH with equal prob. ⇐⇒ A ⊥⊥ B

A B A ⊥⊥ B

13 / 51



Overview
DAG as a probability model

DAG as a causal model
DAG as a tool for practitioners

Mechanisms of inducing dependence
Let A, B be the two fair coins.

only HH and TT =⇒ A ̸⊥⊥ B

(1) Causal relations

A B A B A ̸⊥⊥ B

(2) Common cause (unconditionally)

A

C

B A ̸⊥⊥ B

(3) Conditioning on a common effect

A

D

B A ̸⊥⊥ B | D

14 / 51



Overview
DAG as a probability model

DAG as a causal model
DAG as a tool for practitioners

Mechanisms of inducing dependence
Let A, B be the two fair coins.

only HH and TT =⇒ A ̸⊥⊥ B

(1) Causal relations

A B A B A ̸⊥⊥ B

(2) Common cause (unconditionally)

A

C

B A ̸⊥⊥ B

(3) Conditioning on a common effect

A

D

B A ̸⊥⊥ B | D

14 / 51



Overview
DAG as a probability model

DAG as a causal model
DAG as a tool for practitioners

Mechanisms of inducing dependence
Let A, B be the two fair coins.

only HH and TT =⇒ A ̸⊥⊥ B

(1) Causal relations

A B A B A ̸⊥⊥ B

(2) Common cause (unconditionally)

A

C

B A ̸⊥⊥ B

(3) Conditioning on a common effect

A

D

B A ̸⊥⊥ B | D

14 / 51



Overview
DAG as a probability model

DAG as a causal model
DAG as a tool for practitioners

Mechanisms of inducing dependence
Let A, B be the two fair coins.

only HH and TT =⇒ A ̸⊥⊥ B

(1) Causal relations

A B A B A ̸⊥⊥ B

(2) Common cause (unconditionally)

A

C

B A ̸⊥⊥ B

(3) Conditioning on a common effect

A

D

B A ̸⊥⊥ B | D

14 / 51



Overview
DAG as a probability model

DAG as a causal model
DAG as a tool for practitioners

d-connecting path

▶ A path between A and B: a sequence of distinct, adjacent vertices

A→ ◦ → ◦ ← · · · → B,

where every non-endpoint vertex is either a collider (→ ◦ ←) or a non-collider
(→ ◦ →, ← ◦ ←, ← ◦ →)

A path is d-connecting given C if

1 every non-collider /∈ C , and

2 every collider is ∈ C or is an ancestor of C .

15 / 51
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d-separation

Vertex A and vertex B are d-separated by vertex set C , written as A ⊥⊥ GB | C , if there
is no d-connecting path between A and B given C .

▶ Extended to A ⊥⊥ GB | C for disjoint vertex sets A,B,C .

C1 C2

A B
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Global Markov property

Global Markov property For disjoint vertex sets A,B,C , it holds that

A ⊥⊥ GB | C =⇒ A ⊥⊥ B | C [P], P ∈MG .

A

B

C

D E
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DAG as a CI model

▶ The global Markov property also holds reversely. If P satisfies

A ⊥⊥ GB | C =⇒ A ⊥⊥ B | C [P],

then P ∈MG .

Theorem Factorization ⇐⇒ Global Markov ⇐⇒ Local Markov.

▶ Local Markov: P ∈MG =⇒ A ⊥⊥ non-descendants of A | Pa(A)

☞ That is, the model defined asMG := {P : P factorizes according to G} can be
viewed as a CI model

{P : A ⊥⊥ GB | C =⇒ A ⊥⊥ B | C [P]},
i.e.,

{P : P satisfies CIs that are encoded as d-separations in G}.

18 / 51
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Graphoid axioms

▶ From a set of CIs, new CIs may be derived, e.g., with applications of ‘graphoid
axioms’:

1 Symmetry: A ⊥⊥ B | C =⇒ B ⊥⊥ A | C
2 Decomposition: A ⊥⊥ B,D | C =⇒ A ⊥⊥ B | C and A ⊥⊥ D | C
3 Weak union: A ⊥⊥ B,D | C =⇒ A ⊥⊥ B | D,C
4 Contraction: A ⊥⊥ B | C and A ⊥⊥ D | B,C =⇒ A ⊥⊥ B,D | C

☞ Example Given
A ⊥⊥ B, A ⊥⊥ C | B,

we can derive

A ⊥⊥ B, A ⊥⊥ C | B =⇒ A ⊥⊥ B,C =⇒ A ⊥⊥ C .

19 / 51
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Completeness of d-separation

▶ Question: From the list CIs encoded by d-separations, can we derive a new CI (e.g.,
with graphoid axioms) that holds for every P ∈MG but does not correspond to any
d-separation in the graph? NO!

Theorem For every A,B,C such that A and B are d-connected given C on G, there
exists P ∈MG such that

A ̸⊥⊥ B | C [P].

20 / 51
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Completeness of d-separation

▶ Why is this important?

Milan Studenỳ (1992) showed that CIs cannot be axiomatized by a finite set of rules.
That is, one cannot deduce all the consequences of an arbitrary set {CI1,CI2, . . . ,CIk}
using a finite number of rules (e.g. graphoid axioms).
☞ Graphoid axioms are incomplete and cannot be completed, if one is free to specify the

list of CIs.

☞ However, DAG models are a class of nice CI models by confining the set of CIs
(reducing complexity).

21 / 51
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Examples over three variables

▶ V = {A,B,C}.

A ⊥⊥ B C
A B

A ⊥⊥ B | C
C

A B

CA B

CA B

A ⊥⊥ B
A ⊥⊥ B | C
B ⊥⊥ C

B ⊥⊥ C | A

CA B
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Markov equivalence

▶ G and G′ are called ‘Markov equivalent’, written as G ∼ G′, if they define the same
model.

▶ i.e., they encode the same CIs.

Theorem Two DAGs over the same set of vertices are Markov equivalent iff they
share the same adjacencies and unshielded colliders.

▶ Unshielded collider: B → D ← C but B,C are not adjacent

A

B

C

D E

23 / 51
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Markov equivalence class

▶ A Markov equivalence class can be represented by an essential graph / CPDAG.
(Without extra assumptions, DAGs can only be learned from data up to Markov equivalence.)

A ⊥⊥ B C
A B

C
A B

A ⊥⊥ B | C
C

A B

CA B

CA B C
A B

A ⊥⊥ B
A ⊥⊥ B | C
B ⊥⊥ C

B ⊥⊥ C | A

CA B CA B
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Parametric case: finite state space

▶ When every variable only takes finitely many levels, the model can be parametrized in terms
of conditional probability tables {p(A | Pa(A)) : A ∈ V }.

▶ Efficient algorithms exist for marginalization and computing posterior probabilities

25 / 51
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Parametric case: linear SEM

Each linear equation posits that

Vi = β⊺
i Pa(Vi ) + εi ,

where εi is exogenous error (drawn independently).

W Z

X Y

W = εw
Z = εz
X = βwxW +βzxZ+ εx
Y = βwyW +βzyZ+ εy

▶ Because of acyclicity, it admits a unique solution:

V = B⊺V + ε ⇐⇒ V = (I − B)−⊺ε.

26 / 51
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Limitation of DAGs

DAGs are not closed (in general) under marginalization and selection.

▶ Marginalization: Consider V = O ∪U for O ∩U = ∅, where we only get to observe
P(O). ▶ U are latent variables

O1 O2

O3

U1

U2 U3

O1 O2

O3

O1 ⊥⊥ O2, O1 ̸⊥⊥ O2 | O3

O1 ⊥⊥ O3, O1 ̸⊥⊥ O3 | O2

O2 ⊥⊥ O3, O2 ̸⊥⊥ O3 | O1

☞ Such a CI model does not correspond
to any DAG over O.

27 / 51
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DAGs with latent variables

For a DAG over V = O ∪U ,

constraints in P(O) =

ancestral graphs︷︸︸︷
CIs + ‘Verma’ constraints︸ ︷︷ ︸
equalities (nested Markov models)

+ inequalities

☞ See also Richardson and Spirtes (2002), Richardson (2003), Robin J Evans (2016),
and Richardson, Robin J. Evans, et al. (2023).
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What makes it causal?

We have already seen that a DAG is a probability model as it defines a set of probability
distributionsMG . ▶ P ∈MG is an observed distribution over factual random variables.

☞ What makes it a causal model?

▶ It must be augmented with extra semantics that

1 posits the existence of counterfactuals (i.e., potential outcomes),

2 makes assumptions about factual (e.g., Y ) and counterfactual (e.g., Y (a))
variables, and

3 connects the counterfactual distributions with the observed distribution.
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Sampling from a DAG

A

B

C

D E

Following the topological ordering A ≺ B ≺ C ≺ D ≺ E ,

1 Draw A ∼ P(A)

2 Draw B ∼ P(B | A), C ∼ P(C | A)
3 Draw D ∼ P(D | B,C )

4 Draw E ∼ P(E | D)
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Alternative sampling (I): one-step-ahead counterfactuals

A a

B(a) b

C (a) c

D(b, c) d E (d)

▶ Single-World Intervention Graph (SWIG) (Richardson and J. M. Robins, 2013)

1 Draw A ∼ P(A)

2 For every potential a, draw B(a) ∼ P(B | A = a), C (a) ∼ P(A | A = a) independent of A

3 For every potential (b, c), draw D(b, c) ∼ P(D | B = b,C = c) independent of previously
drawn.

4 For every potential d , draw E (d) ∼ P(E | D = d) independent of previously drawn.
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Alternative sampling (I): one-step-ahead counterfactuals

▶ This is called ‘single-world’ because we only posit that

A ⊥⊥ B(a),C (a) for every a

and
B(a) ∼ P(B | A = a), C (a) ∼ P(C | A = a) for every a.

▶ Refrain from making ‘cross-world’ statements such as

A ⊥⊥ B(a),B(a′),B(a′′),C (a),C (a′),C (a′′)

because we will never see B(a) and B(a′) together for a ̸= a′.
☞ Cross-world assumptions cannot be empirically verified.

▶ Nevertheless, we can empirically examine A ⊥⊥ B(a),C (a), if we can observe the naturally
occurring value of A immediately before we intervene on it.
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Alternative sampling (II): recursive substitution

A

B

C

D E A a

B(a) b

C (a) c

D(b, c) d E (d)

To generate the observed, factual variables,

1 A = A,

2 B = B(A), C = C (A),

3 D = D(B,C ),

4 E = E (D).

▶ Apparently, (A,B,C ,D,E ) ∼ P
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Alternative sampling (III): intervention

☞ Suppose that we intervene on B and set it to b′ — imposes input to B’s children.

A a

B(a) b

C (a) c

D(b, c) d E (d) A(b′)

B(b′)
b′

C (b′)

D(b′) E (b′)

1 A(b′) = A,

2 B(b′) = B(A(b′)) = B(A), C (b′) = C (A(b′)) = C (A)
▶ B(b′) is the naturally occurring value of B immediately before it is intervened on

3 D(b′) = D(b′,C (b′)),

4 E (b′) = E (D(b′)).

▶ This defines the distribution of P((A,B,C ,D,E )(b′)), or P(A,B,C ,D,E | do(B = b′)).
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Alternative sampling: the causal model

☞ This set of semantics defines the FFRCISTG / SWIG causal model associated with
a DAG G.

▶ ‘Finest Fully Randomized Causally Interpreted Structured Tree Graph’ (J. Robins, 1986)

☞ It makes weaker assumptions than Pearl’s NPSEM-IE (nonparametric structural
equation model with independent errors) causal model.

▶ Even though NPSEM-IE and DAG define the same probability model!
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g-formula

With the semantics just described, the counterfactual distribution is

P (A(b′) = a,B(b′) = b,C (b′) = c ,D(b′) = d ,E (b′) = e) =

P(A = a)P(B = b | A = a)P(C = c | A = a)P(D = d | B = b′,C = c)P(E = e | D = e).

▶ This is identified from the observed distribution P because every one-step-ahead
conditional is identified from P.

g-formula

P(V (a) = v) =
|V |∏
i=1

P(vi | aPa(i)∩A, vPa(i)\A)

▶ From this we can identify counterfactual means, etc.
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g-formula

A

B

C

D E

▶ Example

EE (b′) =
∑

a,b,c,d,e

eP(A = a)P(B = b | A = a)P(C = c | A = a)

× P(D = d | B = b′,C = c)P(E = e | D = d)

=
∑
d,c

E[E | D = d ]P(D = d | B = b′,C = c)P(C = c)

=
∑
d,c

E[E | D = d ,B = b′,C = c]P(D = d | B = b′,C = c)P(C = c) (why?)
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g-formula

A

B

C

D E

EE (b′) =
∑
c

∑
d

E[E | D = d ,B = b′,C = c]P(D = d | B = b′,C = c)P(C = c)

=
∑
c

E[E | B = b′,C = c]P(C = c)

= E {E[E | B = b′,C = c]} .

▶ Backdoor/adjustment formula that adjusts for C
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Backdoor/adjustment

Suppose A is the treatment and Y is the outcome.

▶ A set of variables S ⊆ V \ {A,Y } is a valid adjustment set if

P(Y (a) = y) = E {P(Y = y | A = a,S)}

under the SWIG causal model associated with G.

Theorem S is a valid adjustment set if it satisfies the backdoor criterion:

1 S contains no descendant of A,

2 No d-connecting path between A and Y given S with an arrowhead into A.
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Backdoor/adjustment

▶ Identifying P(E (b′)).

A

B

C

D E

▶ Valid adjustment sets:
{C}, {A}, {A,C}.

☞ Adjusting for {C} is the most efficient (Henckel et al., 2022; Rotnitzky and Smucler, 2020).

▶ A different, but more efficient estimator uses C ,D (Guo, Perković, et al., 2023).
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In the presence of latent variables

▶ For a DAG with latent variables U , we can use latent projection to obtain an ADMG (acyclic
directed mixed graph) over observed variables.

1 Whenever there is a path of the form w u1 . . . u2 v add w v (if
not already present).

2 Whenever there is a path of the form w u1 . . . u2 v add w v .

▶ Example

A M Y

U1

U2

A M Y
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Front-door formula

A M Y A a M(a) m Y (m)

Front-door formula

EY (a) =
∑
m

EY (m)︷ ︸︸ ︷
E{E[Y | M = m,A]}×P(M = m | A = a).
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Front-door formula

A M Y A a M(a) m Y (m)

P(Y (a) = y) = P(Y (M(a)) = y)

=
∑
m

P(Y (M(a)) = y | M(a) = m)P(M(a) = m) (why?)

=
∑
m

P(Y (m) = y | M(a) = m)P(M(a) = m)

=
∑
m

P(Y (m) = y)P(M(a) = m) (why?)

=
∑
m

{∑
a′

P(Y = y | M = m,A = a′)P(A = a′)

}
P(M(a) = m | A = a) (why?)

=
∑
m

{∑
a′

P(Y = y | M = m,A = a′)P(A = a′)

}
P(M = m | A = a).
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Identification in the presence of latent variables

▶ Not all (single-world) counterfactual quantities are identified.

▶ The ID algorithm due to Jin Tian provides a complete solution.
▶ See also Shpitser and Pearl (2006), Richardson, Robin J. Evans, et al. (2023, §4.3).
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DAG as a tool for practitioners
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Use of DAGs in practice

Practitioners can use DAGs/ADMGs to

1 Identify and communicate biases (confounding, selection). (yes!)
e.g., when there is a time-varying confounder

A1 L A2 Y

U

τ

2 Identify a causal quantity of interest and consider its estimation. (to some
extent)

3 Design an observational study. (largely open)
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Challenges

1 Results strongly rely on the DAG model being correctly specified.

2 Often difficult to confidently specify (or learn) a DAG for applications.

3 Sophisticated forms of nonparametric identification require detailed assumptions
that are often difficult to justify in practice.

4 Drawing a DAG can be a bad idea: unreliable and unnecessary.

5 Model elicitation, robust methods, sensitivity analysis.
▶ See Guo and Zhao (2023) for an interactive protocol of eliciting an adjustment set.
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Guo, F Richard, Emilija Perković, et al. (2023). “Variable elimination, graph
reduction and the efficient g-formula”. In: Biometrika 110.3, pp. 739–761.
Shpitser, Ilya and Judea Pearl (2006). “Identification of joint interventional
distributions in recursive semi-Markovian causal models”. In: AAAI, pp. 1219–1226.
Guo, F Richard and Qingyuan Zhao (2023). “Confounder selection via iterative
graph expansion”. In: arXiv preprint arXiv:2309.06053.

51 / 51


	Overview
	DAG as a probability model
	DAG as a causal model
	DAG as a tool for practitioners
	Appendix
	References


