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I congratulate Evans and Didelez warmly on this innovative and inspiring paper. Here, I
offer my interpretation of the approach in terms of two factorizations and a density ratio.

Any distribution over Z,X, Y can be factorized in two ways:(
PZX , PY |Z,X

) C−1

⇆
C

PZXY

A−1

⇄
A

(
PZX , PY |X , ϕZY |X

)
. (1)

Factorization C−1 is the usual one; it is factorization A−1 that is the focus of the two authors.
More concretely, suppose ϕZY |X(z, y | x) is a conditional copula density, i.e., for every value of
x, (z, y) 7→ ϕZY |X(z, y | x) is a density function over [0, 1]2 with uniform margins. To obtain
A−1(PZXY ), take PZX and PY |X to be the corresponding component and let ϕZY |X=x be the
density function of (F (Z | X = x), F (Y | X = x)) for every x in the support of X. Conversely,
to compose PXY Z from the three pieces, we have

pZXY (z, x, y) = A
(
pZX , pY |X , ϕZY |X

)
= pZX(z, x) pY |X(y | x)ϕZY |X(F (z | x), F (y | x) | x)︸ ︷︷ ︸

=pY |ZX(y|z,x)

, (2)

where F (z | x) and F (y | x) are defined by PZX and PY |X respectively. Note that although
PZX appear on both sides of Eq. (1), the relation between PY |Z,X and the pair (PY |X , ϕZY |X)
is not a separate bijection because F (z | x) is needed to map one to the other. In other words,
the map between PY |Z,X and (PY |X , ϕZY |X) itself depends on PZX .

Suppose P ∗
ZXY is a related distribution, of which the margin P ∗

Y |X is our model of interest.
We require that P ∗

ZXY is related to PZXY through a density ratio r, given by

p∗(z, x, y)

p(z, x, y)
= r(z, x; p),

such that (i) r does not depend on y, (ii) r > 0 P -almost everywhere, and (iii) r can be identified
from P . Then, by integrating out y on both sides of p∗(z, x, y) = r(z, x; p) p(z, x, y), we have

r(z, x; p) =
p∗(z, x)

p(z, x)
, p∗(y | z, x) = p(y | z, x). (3)

That p∗(z, x, y) being “cognate” with respect to p(z, x, y) amounts to choosing

r(z, x; p) =
w(z | x)
p(z | x)
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for some weight w(z | x), such as w(z | x) = p(z) for estimating ATE and w(z | x) = p(z | x = 1)
for estimating ATT.

With r(x, y; p) chosen and fixed, the frugal parametrization is to represent p (and hence p∗)
through pZX , p∗Y |X and ϕ∗

ZY |X , i.e., the following three pieces in box:

(
PZX , PY |Z,X

) C−1

⇆
C

PZXY

A−1

⇄
A

(
PZX , PY |X , ϕZY |X

)
(
P ∗
ZX , P ∗

Y |Z,X

) C−1

⇆
C

P ∗
ZXY

A−1

⇄
A

(
P ∗
ZX , P ∗

Y |X , ϕ∗
ZY |X

)
.

The likelihood can be obtained through

p(z, x, y) =
p∗(z, x, y)

r(z, x; p)
=

A (p∗(z, x), p∗(y | x), ϕ∗(z, y | x))
r(z, x; p)

=
A (p(z, x) r(z, x; p), p∗(y | x), ϕ∗(z, y | x))

r(z, x; p)
,

where the second line uses Eq. (3). When ϕ∗(z, y | x) is a conditional copula density, using
Eq. (2), it follows that

p(z, x, y) = p(z, x) p∗(y | x)ϕ∗(F ∗(z | x), F ∗(y | x) | x)︸ ︷︷ ︸
=p(y|z,x)

. (4)

Indeed, by uniform margins of the copula, one can check that∫
p∗(y | x)ϕ∗(F ∗(z | x), F ∗(y | x) | x) dy =

∫
dF ∗(y | x)ϕ∗(F ∗(z | x), F ∗(y | x) | x) = 1.

Further, in Eq. (4), the arguments of ϕ∗ depends on F ∗(y | x) and F ∗(z | x): the former
is derived from p∗(y | x) and the latter is the conditional CDF pertaining to p∗(z, x) =
p(z, x) r(z, x; p), given by

F ∗(z | x) =
∫ z
−∞ p(z′, x)r(z′, x; p) dz′∫ +∞
−∞ p(z′, x)r(z′, x; p) dz′

. (5)

Hence, Eq. (4) provides an explicit expression for p(z, x, y) in terms of pZX , p∗Y |X and ϕ∗
ZY |X ,

which depends on the pre-specified density ratio r(x, y; p) through Eq. (5). Multiplying Eq. (4)
by the density ratio simply yields the expression for p∗(z, x, y).

Example 1 (Sequentially randomized trial). For Fig. 1, with r(a, l, b; p) = p(b)/p(b | a, l), we
can parametrize P and P ∗ in terms of the three pieces in box below:

P (A,L,B, Y )
A−1

⇄
A

(
PALB , PY |AB, ϕY L|AB

)
P ∗(A,L,B, Y )

A−1

⇄
A

(
P ∗
ALB, P ∗

Y |AB , ϕ∗
Y L|AB

)
.

Example 2 (Partially marginal model). Suppose we have an observational study with baseline
covariates Z = (Z1, Z2), treatment X and outcome Y . Imagine that we want to study how Z1

modifies the effect of X on Y . Hence, we want to choose P ∗(Z,X, Y ) such that P ∗(Y | X,Z1)
aligns with our intended marginal model P (Y | Z1, do(X)). In the meantime, we need to use
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(a)

A L B Y

(b)

Figure 1: (a) P (A,L,B, Y ), (b) P ∗(A,L,B, Y ).

both Z1 and Z2 to control for the confounding between X and Y . This is called a “partially”
marginal model because the marginal model is conditional on a partial collection of baseline
covariates. To facilitate this analysis, we can choose density ratio

r(z1, z2, x; p) = p(x)/p(x | z1, z2)

and parametrize p (and hence p∗) in terms of

p(z1, z2, x), p∗(y | z1, x), ϕ∗
Z2,Y |Z1,X

.
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