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I congratulate Evans and Didelez warmly on this innovative and inspiring paper. Here, I
offer my interpretation of the approach in terms of two factorizations and a density ratio.
Any distribution over Z, X,Y can be factorized in two ways:

C—l A—l
(Pzx,Py|z,x) ? Pzxy f (Pzx, Py|x, dzv|x) - (1)

Factorization C~! is the usual one; it is factorization A~' that is the focus of the two authors.
More concretely, suppose ¢zy| x(z,y | ) is a conditional copula density, i.e., for every value of
T, (2,9) = ¢zvix(2,y | ¥) is a density function over [0, 1] with uniform margins. To obtain
A=Y (Pyxy), take Pzx and Py |x to be the corresponding component and let ¢y x—, be the
density function of (F(Z | X =x),F(Y | X = x)) for every x in the support of X. Conversely,
to compose Pxyz from the three pieces, we have

pzxy(z.2,9) = A (pzx, Py |x, Pzv|X)

=pzx(z,7) pY|X(y | z) ¢ZY|X(F(Z |2), F(y | z) | 2), (2)

~-
=py|zx (ylz7)

where F(z | z) and F(y | x) are defined by Pzx and Py |x respectively. Note that although
Pzx appear on both sides of Eq. (1), the relation between Py|z x and the pair (Py|x, ¢zy|x)
is not a separate bijection because F(z | ) is needed to map one to the other. In other words,
the map between Py, x and (Py|x, ¢zy|x) itself depends on Pzx.

Suppose Py is a related distribution, of which the margin P{i|  is our model of interest.
We require that Py is related to Pzxy through a density ratio r, given by

p*(Z,SL’,y)
p(Z,:L",y)

such that (i) » does not depend on y, (ii) » > 0 P-almost everywhere, and (iii) 7 can be identified
from P. Then, by integrating out y on both sides of p*(z,z,y) = r(z, z;p) p(z, x, y), we have

=r(z,x;p),

p*(z,z)

r(z,x;p) = ;o P lze)=py|z2). 3
) =EE0 s =y | 50 ©
That p*(z,x,y) being “cognate” with respect to p(z,x,y) amounts to choosing
w(z | z)
r(z,x;p) =
p(z | x)



for some weight w(z | ), such as w(z | z) = p(z) for estimating ATE and w(z | z) = p(z | x = 1)
for estimating ATT.

With r(z,y; p) chosen and fixed, the frugal parametrization is to represent p (and hence p*)
through pzx, p;‘X and ¢*ZY|X’ i.e., the following three pieces in box:
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(Pzx,Py|z,x) ‘? Pzxy 2 (7 Py x, ¢ZY|X)
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The likelihood can be obtained through

e = P Eey)  AR(z2)p*(y ] 2), ¢ (2, | 2))
Pz 2 3) r(z,2;p) r(z,2;p)
A(p(z,z) r(z,2;p),p*(y | 2), 0" (2,y | ))

B r(z, ;D)

)

where the second line uses Eq. (3). When ¢*(z,y | z) is a conditional copula density, using
Eq. (2), it follows that

p(z2,y) = p(z,2) p'(y | ) 6" (F* (2 | x), F*(y | x) | x). (4)

~~

=p(y|z,z)

Indeed, by uniform margins of the copula, one can check that

/p*(y | 2) " (F"(z | 2), F*(y | 2) | iv)dyz/dF*(y | ) " (F"(z | 2), F*(y | 2) | 2) = 1.

Further, in Eq. (4), the arguments of ¢* depends on F*(y | ) and F*(z | z): the former
is derived from p*(y | x) and the latter is the conditional CDF pertaining to p*(z,z) =
p(z, ) r(z,2;p), given by

/

2o, x)r(2 a5 p) dz
f+°o p(2, x)r(2, z; p) dz’

—00

Fi(z | x) = ()

Hence, Eq. (4) provides an explicit expression for p(z,x,y) in terms of pzx, p%}' + and ng}Y' e
which depends on the pre-specified density ratio r(x, y; p) through Eq. (5). Multiplying Eq. (4)
by the density ratio simply yields the expression for p*(z,z,y).

Example 1 (Sequentially randomized trial). For Fig. 1, with r(a,l,b;p) = p(b)/p(b | a,l), we
can parametrize P and P* in terms of the three pieces in box below:

A—l
P(A,L,B,Y) f <, Py |ag, ¢YL|AB>

A—l
P*(A,L,B,Y) f (P.ZLBv PYiap} |9y iiaB > :

Example 2 (Partially marginal model). Suppose we have an observational study with baseline
covariates Z = (Z1, Z3), treatment X and outcome Y. Imagine that we want to study how Z;
modifies the effect of X on Y. Hence, we want to choose P*(Z, X,Y’) such that P*(Y | X, Z1)

aligns with our intended marginal model P(Y | Z;,do(X)). In the meantime, we need to use
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Figure 1: (a) P(A,L,B,Y), (b) P*(A,L,B,Y).

both Z; and Z, to control for the confounding between X and Y. This is called a “partially”
marginal model because the marginal model is conditional on a partial collection of baseline
covariates. To facilitate this analysis, we can choose density ratio

r(z1, 22, 2;p) = p(x)/p(T | 21, 22)
and parametrize p (and hence p*) in terms of

p(z1,22,), p*(y|z1,2), ¢}2,Y|Zl,x~



