Richard Guo's contribution to the Discussion of 'Parameterizing and Simulating from Causal Models' by Evans and Didelez

F. Richard Guo ${ }^{1}$
${ }^{1}$ Research Associate, Statistical Laboratory, University of Cambridge, UK, ricguo@statslab.cam.ac.uk

Oct 19, 2023

I congratulate Evans and Didelez warmly on this innovative and inspiring paper. Here, I offer my interpretation of the approach in terms of two factorizations and a density ratio.

Any distribution over Z, X, Y can be factorized in two ways:

$$
\begin{equation*}
\left(P_{Z X}, P_{Y \mid Z, X}\right) \stackrel{C^{-1}}{\leftrightarrows} P_{Z X Y} \stackrel{A^{-1}}{\rightleftarrows}\left(P_{Z X}, P_{Y \mid X}, \phi_{Z Y \mid X}\right) . \tag{1}
\end{equation*}
$$

Factorization C^{-1} is the usual one; it is factorization A^{-1} that is the focus of the two authors. More concretely, suppose $\phi_{Z Y \mid X}(z, y \mid x)$ is a conditional copula density, i.e., for every value of $x,(z, y) \mapsto \phi_{Z Y \mid X}(z, y \mid x)$ is a density function over $[0,1]^{2}$ with uniform margins. To obtain $A^{-1}\left(P_{Z X Y}\right)$, take $P_{Z X}$ and $P_{Y \mid X}$ to be the corresponding component and let $\phi_{Z Y \mid X=x}$ be the density function of $(F(Z \mid X=x), F(Y \mid X=x))$ for every x in the support of X. Conversely, to compose $P_{X Y Z}$ from the three pieces, we have

$$
\begin{align*}
p_{Z X Y}(z, x, y) & =A\left(p_{Z X}, p_{Y \mid X}, \phi_{Z Y \mid X}\right) \\
& =p_{Z X}(z, x) \underbrace{p_{Y \mid X}(y \mid x) \phi_{Z Y \mid X}(F(z \mid x), F(y \mid x) \mid x)}_{=p_{Y \mid Z X}(y \mid z, x)}, \tag{2}
\end{align*}
$$

where $F(z \mid x)$ and $F(y \mid x)$ are defined by $P_{Z X}$ and $P_{Y \mid X}$ respectively. Note that although $P_{Z X}$ appear on both sides of Eq. (1), the relation between $P_{Y \mid Z, X}$ and the pair ($P_{Y \mid X}, \phi_{Z Y \mid X}$) is not a separate bijection because $F(z \mid x)$ is needed to map one to the other. In other words, the map between $P_{Y \mid Z, X}$ and $\left(P_{Y \mid X}, \phi_{Z Y \mid X}\right)$ itself depends on $P_{Z X}$.

Suppose $P_{Z X Y}^{*}$ is a related distribution, of which the margin $P_{Y \mid X}^{*}$ is our model of interest. We require that $P_{Z X Y}^{*}$ is related to $P_{Z X Y}$ through a density ratio r, given by

$$
\frac{p^{*}(z, x, y)}{p(z, x, y)}=r(z, x ; p)
$$

such that (i) r does not depend on y, (ii) $r>0 P$-almost everywhere, and (iii) r can be identified from P. Then, by integrating out y on both sides of $p^{*}(z, x, y)=r(z, x ; p) p(z, x, y)$, we have

$$
\begin{equation*}
r(z, x ; p)=\frac{p^{*}(z, x)}{p(z, x)}, \quad p^{*}(y \mid z, x)=p(y \mid z, x) . \tag{3}
\end{equation*}
$$

That $p^{*}(z, x, y)$ being "cognate" with respect to $p(z, x, y)$ amounts to choosing

$$
r(z, x ; p)=\frac{w(z \mid x)}{p(z \mid x)}
$$

for some weight $w(z \mid x)$, such as $w(z \mid x)=p(z)$ for estimating ATE and $w(z \mid x)=p(z \mid x=1)$ for estimating ATT.

With $r(x, y ; p)$ chosen and fixed, the frugal parametrization is to represent p (and hence p^{*}) through $p_{Z X}, p_{Y \mid X}^{*}$ and $\phi_{Z Y \mid X}^{*}$, i.e., the following three pieces in box:

$$
\begin{aligned}
& \left(P_{Z X}, P_{Y \mid Z, X}\right) \underset{C}{\stackrel{C^{-1}}{\leftrightarrows}} P_{Z X Y} \underset{A}{\stackrel{A^{-1}}{\rightleftarrows}}\left(\boxed{P_{Z X}}, P_{Y \mid X}, \phi_{Z Y \mid X}\right) \\
& \left(P_{Z X}^{*}, P_{Y \mid Z, X}^{*}\right) \underset{C}{C^{-1}} \underset{\leftrightarrows}{\leftrightarrows} P_{Z X Y}^{*} \underset{A}{\stackrel{A^{-1}}{\rightleftarrows}}\left(P_{Z X}^{*}, P_{Y \mid X}^{*}, \phi_{Z Y \mid X}^{*}\right) .
\end{aligned}
$$

The likelihood can be obtained through

$$
\begin{aligned}
p(z, x, y)=\frac{p^{*}(z, x, y)}{r(z, x ; p)} & =\frac{A\left(p^{*}(z, x), p^{*}(y \mid x), \phi^{*}(z, y \mid x)\right)}{r(z, x ; p)} \\
& =\frac{A\left(p(z, x) r(z, x ; p), p^{*}(y \mid x), \phi^{*}(z, y \mid x)\right)}{r(z, x ; p)},
\end{aligned}
$$

where the second line uses Eq. (3). When $\phi^{*}(z, y \mid x)$ is a conditional copula density, using Eq. (2), it follows that

$$
\begin{equation*}
p(z, x, y)=p(z, x) \underbrace{p^{*}(y \mid x) \phi^{*}\left(F^{*}(z \mid x), F^{*}(y \mid x) \mid x\right)}_{=p(y \mid z, x)} . \tag{4}
\end{equation*}
$$

Indeed, by uniform margins of the copula, one can check that

$$
\int p^{*}(y \mid x) \phi^{*}\left(F^{*}(z \mid x), F^{*}(y \mid x) \mid x\right) \mathrm{d} y=\int \mathrm{d} F^{*}(y \mid x) \phi^{*}\left(F^{*}(z \mid x), F^{*}(y \mid x) \mid x\right)=1 .
$$

Further, in Eq. (4), the arguments of ϕ^{*} depends on $F^{*}(y \mid x)$ and $F^{*}(z \mid x)$: the former is derived from $p^{*}(y \mid x)$ and the latter is the conditional CDF pertaining to $p^{*}(z, x)=$ $p(z, x) r(z, x ; p)$, given by

$$
\begin{equation*}
F^{*}(z \mid x)=\frac{\int_{-\infty}^{z} p\left(z^{\prime}, x\right) r\left(z^{\prime}, x ; p\right) \mathrm{d} z^{\prime}}{\int_{-\infty}^{+\infty} p\left(z^{\prime}, x\right) r\left(z^{\prime}, x ; p\right) \mathrm{d} z^{\prime}} . \tag{5}
\end{equation*}
$$

Hence, Eq. (4) provides an explicit expression for $p(z, x, y)$ in terms of $p_{Z X}, p_{Y \mid X}^{*}$ and $\phi_{Z Y \mid X}^{*}$, which depends on the pre-specified density ratio $r(x, y ; p)$ through Eq. (5). Multiplying Eq. (4) by the density ratio simply yields the expression for $p^{*}(z, x, y)$.

Example 1 (Sequentially randomized trial). For Fig. 1, with $r(a, l, b ; p)=p(b) / p(b \mid a, l)$, we can parametrize P and P^{*} in terms of the three pieces in box below:

$$
\begin{aligned}
P(A, L, B, Y) & \underset{A}{\stackrel{A^{-1}}{\rightleftarrows}}\left(\boxed{P_{A L B}}, P_{Y \mid A B}, \phi_{Y L \mid A B}\right) \\
P^{*}(A, L, B, Y) & \underset{A}{A^{-1}}\left(P_{A L B}^{*}, P_{Y \mid A B}^{*}, \boxed{\phi_{Y L \mid A B}^{*}}\right) .
\end{aligned}
$$

Example 2 (Partially marginal model). Suppose we have an observational study with baseline covariates $Z=\left(Z_{1}, Z_{2}\right)$, treatment X and outcome Y. Imagine that we want to study how Z_{1} modifies the effect of X on Y. Hence, we want to choose $P^{*}(Z, X, Y)$ such that $P^{*}\left(Y \mid X, Z_{1}\right)$ aligns with our intended marginal model $P\left(Y \mid Z_{1}, \operatorname{do}(X)\right)$. In the meantime, we need to use

(a)

(b)

Figure 1: (a) $P(A, L, B, Y)$, (b) $P^{*}(A, L, B, Y)$.
both Z_{1} and Z_{2} to control for the confounding between X and Y. This is called a "partially" marginal model because the marginal model is conditional on a partial collection of baseline covariates. To facilitate this analysis, we can choose density ratio

$$
r\left(z_{1}, z_{2}, x ; p\right)=p(x) / p\left(x \mid z_{1}, z_{2}\right)
$$

and parametrize p (and hence p^{*}) in terms of

$$
p\left(z_{1}, z_{2}, x\right), \quad p^{*}\left(y \mid z_{1}, x\right), \quad \phi_{Z_{2}, Y \mid Z_{1}, X}^{*} .
$$

