Causal DAGs

Single treatment
Time-varying treatments
Marginal structural model

SISCER Module 2: Causal Inference with Observational Data:
Common Designs and Statistical Methods

Ting Ye & Richard Guo

Department of Biostatistics, UW

Day 3, Lecture 6: Time-varying treatments

July 10, 2024

1/56



Causal DAGs

Single treatment
Time-varying treatments
Marginal structural model

Overview

Causal directed acyclic graphs (DAGs)
A single treatment

Time-varying treatments and confounding

A& W NN =

Marginal structural model
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Causal directed acyclic graphs (DAGs)
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DAG

A graph G that consists of
® vertices V,
® directed edges E
such that there is no directed cycle.
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DAG

» Pa(D) ={B, C}

» Ch(A) ={B,C}

» A— B — D — E is a directed path A € An(E) and E € De(A)
» A and B are adjacent

» Topological ordering: A< B < C < D < E (not unique) such that
i and j are adjacent with i < j — | — .
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Probability model

1z Associate every vertex with a random variable. » State space can be {0,1}, R or anything

Then a DAG G = (V, E) is associated with

Mg = {P : p(V) factorizes according to G}

_ {P :p(V) =[] plv| Pa("))}'

vev

» Bayesian network. B semiparametric model

@ (D—®

) p(A, B, C,D,E) = p(A) p(B | A)p(C | A)p(D | B, C) p(E | D)
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Equivalent description: NPSEM-IE

P(A, B, C,D,E) = p(A)p(B | A)p(C | A)p(D | B,C) p(E | D).
is equivalent to positing a nonparametric structural equation model with independent errors

(NPSEM-IE): )
527 Eba Ec, Ed, Ee N~ unlf(o, 1)

A= f,(ea)

B = (A, ep)
C= fc(Avgc)

D = fy(B, C,eyq)
E=f(D,ec)
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Constraints: missing edges

Topological ordering: A< B <C<D<E

p(A) p(B | A)p(C | A)p(D | B, C) p(E | D)

p(A) p(B | A)p(C| A B)p(D|B,C,A)p(E|D,A B,C)

» The full DAG represents any P » the nonparametric model.
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Conditional independence

A DAG G, as a probability model Mg, posits

‘missing edges = conditional independence (CI).‘

Nz~
o o m‘e%e

The missing ‘B — C’ posits

P(C| A B)=P(C|A) < &~ P(B,C|A) =P(B|AP(C|A).
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Conditional independence

The graph

also implies, e.g.,
AB,CLE|D, ACLE|B,D,

1 How we read off all the Cls a DAG implies ?
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Dependence: mechanisms

Let A, B be the two fair coins.

HH, TT, HT, TH with equal prob. <— A1 B

@ ®

ALlB
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Mechanisms of inducing dependence
Let A, B be the two fair coins.

only HH and TT = A L B

(1) Causal relations
ALB

(2) Common cause (unconditionally)

@ B ALB

(3) Conditioning on a common effect

(B) ALB|D
®\
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d-connecting path

» A path between A and B: a sequence of distinct, adjacent vertices
A—o—o0¢+---— B,

where every non-endpoint vertex is either a collider (— o «) or a non-collider
(o= 04, —0—)

A path is d-connecting given C if
1 every non-collider ¢ C, and
2 every collider is € C or is an ancestor of C.
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d-separation

Vertex A and vertex B are d-separated by vertex set C, written as A L gB | C, if there
is no d-connecting path between A and B given C.

> Extended to A L gB | C for disjoint vertex sets A, B, C.

@'@

@ ®
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Global Markov property

Global Markov property For disjoint vertex sets A, B, C, it holds that

AlgB|C = ALB|CI[P], PeMg.
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Quiz 1: Which Cls hold?

(B)
(4] (D—®
©

Recall: A path between A and B: a sequence of distinct, adjacent vertices

A—o—o¢+---— B,

where every non-endpoint vertex is either a collider (— o <) or a non-collider. A path is
d-connecting given C if

1 every non-collider ¢ C, and

2 every collider is € C or is an ancestor of C.
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DAG as a Cl model

» The global Markov property also holds reversely. If P satisfies
AlgB|C = ALB|C]|[P]
then P € Mg.

Theorem Factorization <= Global Markov <= Local Markov.

» Local Markov: P € Mg = A L non-descendants of A | Pa(A)

i That is, the model defined as Mg := {P : P factorizes according to G} can be
viewed as a Cl model

(P:ALGB|C = ALB|CIP]},

{P : P satisfies Cls that are encoded as d-separations in G}.
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Sampling from a DAG

» We can simulate (sample) data by sequentially drawing from p(v | Pa(v)).

(B)
A (D—(®
©,

Following the topological ordering A< B < C < D < E,
1 Draw A~ P(A)
2 Draw B~ P(B| A), C ~ P(C | A)
3 Draw D~ P(D | B, C)
4 Draw E ~ P(E | D)
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DAG as a causal model

We have already seen that a DAG is a probability model as it defines a set of

probability distributions Mg satisfying the Cls.
» P € Mg is an observed distribution over factual random variables.

= \What makes it a causal model?

» It must be augmented with extra semantics that
1 posits the existence of counterfactuals (i.e., potential outcomes),
2 makes assumptions about factual (e.g., Y') and counterfactual (e.g., Y(a))
variables, and
3 connects the counterfactual distributions with the observed distribution.
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Recall: Sampling from a DAG

(B)
A (D—(®
©,

Following the topological ordering A< B < C < D < E,

1 Draw A~ P(A)

2 Draw B ~ P(B | A), C ~ P(C | A)
3 Draw D~ P(D | B, C)

4 Draw E ~ P(E | D)
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Alternative sampling (1): one-step-ahead counterfactuals

@ [53 — Die0)] [——(ew)

» Single-World Intervention Graph (SWIG) (Richardson & Robins, 2013)

1 Draw A ~ P(A)
2 For every potential a, draw B(a) ~ P(B| A= a), C(a) ~ P(A| A = a) independent of A
3 For every potential (b, ¢), draw D(b,c) ~ P(D | B = b, C = c¢) independent of previously

drawn.

4 For every potential d, draw E(d) ~ P(E | D = d) independent of previously drawn.
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Alternative sampling (1): one-step-ahead counterfactuals

@l 53 S . D6.0)| [5——{Ewa)
@] [

» Single-World Intervention Graph (SWIG) (Richardson & Robins, 2013)
® A: factual variable; naturally occurring value of A
® a: imagine that upon observing A, immediately we intervene on A and set its value to a
® B(a), C(a): the potential outcomes (counterfactual) under such an intervention
15 From this SWIG, we can see that

‘A 1 B(a),C(a) for every a. ‘
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Alternative sampling (I): recursive substitution

@ @?@

To generate the observed, factual variables,

1 A=A,

2 B=B(A), C=C(A),
3 D=D(B,C),

4 E=E(D).

» Apparently, (A,B,C,D,E) ~ P
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Alternative sampling (I11): intervention

= Suppose that we intervene on B and set it to b’ — imposes input to B's children,
:)
1 A(b) =

2 B(Y) = B(A(b')) = B(A), C(b') = C(A(V)) = C(A)
» B(b') is the naturally occurring value of B immediately before it is intervened on
3 D(b')=D(b,C(b")),
4 E(b')=E(D(b)).
» This defines the distribution of P((A, B, C,D, E)(b')), or P(A, B, C,D,E | do(B = b')).
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Alternative sampling: the causal model

1= This set of semantics defines the FFRCISTG / SWIG causal model associated

with a DAG G.
» ‘Finest Fully Randomized Causally Interpreted Structured Tree Graph’ (Robins, 1986)

5= |t makes weaker assumptions than Pearl's NPSEM-IE (nonparametric structural
equation model with independent errors) causal model.
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Single treatment
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Single treatment, randomized

» A = 1: treated; A = 0: control.

@l =Y

1> From the SWIG, we can read off

AL Y(a),

SO

EY(a)=E[Y|A=a], a=0,1.

(a)

» association = causation
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Single treatment, conditionally randomized
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Single treatment, conditionally randomized

0
CAl [ Y(a)

v | is an observed confounder between A and Y, so E Y(a) # E[Y | A= 3.

B association # causation

» There is no unobserved confounding. Recall that we can use L to identify E Y(a)
through standardization or IPW (inverse probability weighting).
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Single treatment, conditionally randomized: Standardization

D
@AG @?ng(a)

» Standardization: From the SWIG, we see that
AL Y(a)|L,
i.e., Ais randomized within every stratum of L.
1 Within stratum L =/, we have E[Y(a) | L=/1=E[Y |A=a,L=].

2 Averaging over /| to get the whole population:

EY(a)=> E[Y(a)|L=NP(L=1)=|) E[Y|A=aL=/P(L=]).
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Single treatment, conditionally randomized: IPW

AN I

p(L=Np(A=a|L=Np(Y|A=a L=
p(L=Np(A=alL=Np(Y |A=aL=1)  p(L=Dp(A=att=Tip(Y |A=aL=1)

%q(A = 3)/p(A=att=T)
» IPW: Weighting by

/p(AlL)  »qA=0)=q(A=1)=1/2

” p(A)/p(A]| L) > g(A) = p(A), stabilized weight

gives a trial where A is randomized (does not depend on L). P association = causation
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Single treatment, conditionally randomized

D @
cﬂ‘iﬁa <1?E;>v@) @—(Y) <£i;;>ﬂﬂ

IPw: Io—, Y Ta=a Taza Y
B =B { 5= 5 1 B e ) B A )

Stabilized IPW has the same target

T e ) - i)

P(A=a|l) P(A=a|l) P(A=a|l)

= But it makes a difference when fitting marginal structural models with estimated weights...
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Single treatment, conditionally randomized: unified view

» Standardization and IPW target the same population quantity:

TeaY | o [EllaaY |0\ . [PA=a|)E[Y |[A=al] B
S lpasarn) R D) A e SEEY [A=a )

IPW

standardization

== Again, it makes a difference when replaced by estimates...
5 Both standardization and IPW are adjusting for L: We use L to block all the non-causal

paths (paths not in the shape A — --- — Y).

B— CA| [~ Y(a)

= Non-causal (‘backdoor') path A+ L — Y is blocked by L (i.e., not d-connected given L).
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Quiz 2

In the setting below, which strategies can correctly identify E Y (a)?

Li— L)
‘!!h'll"“"

L)
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Time-varying treatments
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Two treatments, randomized

1 Time 0: randomly assign Ap (1: treated; 0: control)
2 Time 1: randomly assign A; (1: treated; 0: control) depending on Ag.
3 Time 2: measure outcome Y

ot | [ Yana)

= (Ag, A1) as a whole is randomized (why?), so
E Y(ao, 31) = E[Y ‘ AO = ao,A1 = al].

» What is the meaning of E Y(0,0)?  » association = causation
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Two treatments: Example

Study of the effect of antiretroviral therapy on a health score (Robins & Hernan,
2008): 32,000 HIV infected subjects followed for one year.

1 Month 0: Assign therapy (Ap = 1: treated; Ap = 0: control) at the start of the
follow-up.

2 Month 6: Measure blood CD4 counts L; and assign therapy (A; = 1: treated;
A1 = 0: control).

3 Month 12: Measure the final health score Y.
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Quiz 3

1 Month 0: Assign therapy (Ag = 1: treated; Ag = 0: control) at the start of the
follow-up.
» Suppose Ap is randomly assigned.

2 Month 6: Measure blood CD4 counts L; and assign therapy (A; = 1: treated,
A1 = 0: control).
» Suppose Ap's assignment depends only on Ay but not L.

3 Month 12: Measure the final health score Y.

DORONO
U

1= J represents unobserved health status that affects both L; and Y. 38 /56
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Quiz 3

1 Month 0: Assign therapy (Ag = 1: treated; Ag = 0: control) at the start of the
follow-up.
» Suppose Ag is randomly assigned.

2 Month 6: Measure blood CD4 counts L; and assign therapy (A; = 1: treated,
A1 = 0: control).
» Suppose Ap's assignment depends only on Ay but not L.

3 Month 12: Measure the final health score Y.

DORONO
U

w Non-causal path is not d-connected (unless conditioning on Ly). 2956
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Two treatments, with time-varying confounder

1 Month 0: Assign therapy (Ag = 1: treated; Ag = 0: control) at the start of the
follow-up.
» Suppose Ag is randomly assigned.

2 Month 6: Measure blood CD4 counts L; and assign therapy (A; = 1: treated,
A1 = 0: control).
» Suppose A;'s assignment depends on both Ay and L;.

3 Month 12: Measure the final health score Y.

(BoF (L~ —Y)
Ui

iz Can we identify E Y'(ap, a1)? 40756
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Dilemma

1 Not adjusting for L;.
(Ao~ ~)—=Y)
Y
Ao~
Y

2 Adjusting for L;.

» Need something more sophisticated.
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IPW: Removing A;'s dependency on L4

(BoF~(La) (A=) (BoF~(L2) A=Y
@ U

weight = ]./p(Al ‘ Ao, Ll) stabilized weight = p(Al | Ao)/p(Al ‘ Ao, Ll)

i After reweighting, E Y(ag, a1) = E[Y | Ao = a0, A1 = a1]. a2/s6
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IPW: ldentification

YHA =ag,A1=a } { HA =ag,A1=a }
]Eya’a :E 0 0,71 1 E 0 0,71 1 .
(0. ) {P(A1=31|A0=30;L1) / P(A1 = a1 | Ao = a0, L1)

1= Does it make a difference to use the stabilized weight
P(Al = a1 ’ AO = ag)/P(Al = a1 ’ AO = ag, Ll)?
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Quiz 4

Suppose Ag, L1, Ay are all binary. What is the estimate of E Y(0,0) based on IPW?

n Ao 1_1 A1 E[y ‘ Ao, L]_, Al]
5 0 0 O 4
100 0 0 1 -1
100 0 1 0 2
50 0 1 1 -3
5 1 0 0 4
50 1 0 1 -2
100 1 1 0 7
200 1 1 1 11

i The first row means there are 50 subjects with Ag = 0,L; = 0, A; = 0 and their average
outcome is 4.
44/56
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Standardization / g-formula

» With a bit more algebra, the IPW formula can be rewritten as

YHA =ap,A1=a } { HA =ap,A1=a }
EY a 7a :E 0 0,71 1 E 0 0,71 1
(30, ) {P(A1—31|A0—307L1) / P(A1 = a1 | Ao = ao, L1)

{ Y ]IA():ao,Aliéﬁ }
P(AO = ao) P(A1 = a | AO = 4aog, Ll)

{ ]E[Y]IA0:307A1:31 | Ll] }
P(Ao = a0) P(A1 = a1 | Ao = ao, L1)
_E {E[Y | Ao = ag, A1 = a1, L1]P(A1 = a1, Ao = ao | Ll)}
P(Ao = ao) P(A1 = a | A() = ao, Ll)
_E {E[Y | Ao = ap, A1 = a1, L1]P(Ag = ap | Ll)}
P(Ao = a0)

=E

&=

= ZE[Y ‘ Ao = ao,Al = ai, L1 = /1]P(L1 = /1 I Ao = ao).
h
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Standardization / g-formula: Intuition

1 Consider Y(a1) := Y (Ao, a1).

A== =Y (W) CAr] [s0— v(a)

Within the stratum of (Ao, L1), A; is independent of Y(a;), so (why?)
E[Y(al) | AQ = 4aog, Ll = /1] = ]E[Y | AO = ao,A1 = a1, L1 = /1]

2 Because Ay is randomly assigned,
E[Y(ao, al)] = E[Y(al) ‘ Ao = 80] = ZE[Y(al) | AO = dp, L1 = /1]P(L1 = /1 | Ao = ao).

I 46 /56
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Positivity

From the standardization / g-formula

E Y(a07al) = ZE[Y | Al = al,Ao = aop, Ll = /1]P(L1 = /1 ‘ A() = ao),
i

to identify E Y(ag, a1), we must have

Vh:P(Ly =h| Ay = a) >0 = data within (ao, a1, h),

Vh: P(Li=h | Ao =a0) >0 = P(A1=a | Ag=a0,L1=h)>0.|
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Quiz 5
Suppose Ag, L1, Ay are all binary. What is the estimate of E Y(0,0) based on standardization /
g-formula?
n A() L1 A1 E[Y ‘ Ao, L17 Al]
50 0 0 O 4
100 0 0 1 -1
100 0 1 0 2
50 0 1 1 -3
50 1 0 0 4
50 1 0 1 -2
100 1 1 0 7
200 1 1 1 11

i The first row means there are 50 subjects with Ag = 0,L; = 0, A; = 0 and their average

outcome is 4.
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Quiz 6: Generalization

1 Month 0: Assign therapy (Ao = 1: treated; Ap = 0: control) at the start of the
follow-up.
» Suppose Y(ap,a1) L Ag | Lo for baseline covariates L.

2 Month 6: Measure blood CD4 counts L; and assign therapy (A; = 1: treated,
A1 = 0: control).
» Suppose Y(ap,a1) L Ay | Lo, Ao, L.

3 Month 12: Measure the final health score Y.
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Generalization

Under positivity and sequential randomization
Y (a0, a1) L Ao | Lo,
Y(ao,a1) 1L Ay | Lo, Ao, L1,

E Y(ao,al) = ZZE[Y ‘ A1 = al,Ao = aog, L1 = /1, Lo = /0]
b h
X P(I_l = /1 | AO = aop, Lo = /O)P(Lo = /0)

» Extends to more time points.
50 /56
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Out of luck

» If either red edge is present, then E Y(ao, a1) cannot be identified.
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Marginal structural model
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Marginal structural (mean) model
Consider two treatments Ag, A1.
» Marginal structural mean model is to postulate and fit
E[Y (a0, a1)] = f(a0, a1;0).
For example, when Ag, A; are both binary:
® Saturated model
E[Y (a0, a1)] = @ + Boao + Bra1 + vapar

® Main effect only
E[Y (a0, a1)] = o + foao + Sra1
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Fitting model with IPW

If (Ao, A1) is randomized, we have E[Y(ag, a1)] = E[Y | Ao = ap, A1 = a1], so the
model can be simply fitted with least squares.

Now under time-varying confounding, we can use IPW to reweigh data such that we
can treat the data as if it comes from a randomized experiment.

» To fit marginal structural mean model,
1 Estimate the propensity score P(a1 | ag, 1) (e.g., with logistic regression)
2 Compute weights w = 1/P(A; | Ao, L1) or the stabilized weights

W= | 3 P(AL| Ao, h)P(h | Ao) | /P(Ar| Ao, ).
h

3 Fit least squares using w or ws as weights. » It makes a difference here.
54/56
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Further reading

See Chapters 19, 20 and 21 of Hernan MA, Robins JM (2020). Causal Inference:
What If. Boca Raton: Chapman & Hall/CRC.
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