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DAG

A graph G that consists of

• vertices V ,

• directed edges E
such that there is no directed cycle.
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DAG

A

B

C

D E

▶ Pa(D) = {B,C}
▶ Ch(A) = {B,C}
▶ A→ B → D → E is a directed path A ∈ An(E ) and E ∈ De(A)
▶ A and B are adjacent

▶ Topological ordering: A ≺ B ≺ C ≺ D ≺ E (not unique) such that

i and j are adjacent with i ≺ j =⇒ i → j .
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Probability model

☞ Associate every vertex with a random variable. ▶ State space can be {0, 1}, R or anything

Then a DAG G = (V ,E ) is associated with

MG := {P : p(V ) factorizes according to G}

=

{
P : p(V ) =

∏
v∈V

p(v | Pa(v))

}
.

▶ Bayesian network. ▶ semiparametric model

A

B

C

D E

p(A,B,C ,D,E ) = p(A) p(B | A) p(C | A) p(D | B,C ) p(E | D)
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Equivalent description: NPSEM-IE

A

B

C

D E

p(A,B,C ,D,E ) = p(A) p(B | A) p(C | A) p(D | B,C ) p(E | D).

is equivalent to positing a nonparametric structural equation model with independent errors
(NPSEM-IE):

εa, εb, εc , εd , εe
iid∼ unif(0, 1)

A = fa(εa)

B = fb(A, εb)

C = fc(A, εc)

D = fd(B,C , εd)

E = fe(D, εe)
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Constraints: missing edges

Topological ordering: A ≺ B ≺ C ≺ D ≺ E

A

B

C

D E p(A) p(B | A) p(C | A) p(D | B,C ) p(E | D)

A

B

C

D E p(A) p(B | A) p(C | A,B) p(D | B,C ,A) p(E | D,A,B,C )

▶ The full DAG represents any P ▶ the nonparametric model.
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Conditional independence

A DAG G, as a probability modelMG , posits

missing edges =⇒ conditional independence (CI).

A

B

C

D E A

B

C

D E

The missing ‘B → C ’ posits

P(C | A,B) = P(C | A) ⇐⇒ B ⊥⊥ C | A ⇐⇒ P(B,C | A) = P(B | A)P(C | A).
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Conditional independence

The graph

A

B

C

D E

also implies, e.g.,
A,B,C ⊥⊥ E | D, A,C ⊥⊥ E | B,D, . . .

☞ How we read off all the CIs a DAG implies ?
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Dependence: mechanisms

Let A, B be the two fair coins.

HH, TT, HT, TH with equal prob. ⇐⇒ A ⊥⊥ B

A B A ⊥⊥ B
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Mechanisms of inducing dependence
Let A, B be the two fair coins.

only HH and TT =⇒ A ̸⊥⊥ B

(1) Causal relations

A B A B A ̸⊥⊥ B

(2) Common cause (unconditionally)

A

C

B A ̸⊥⊥ B

(3) Conditioning on a common effect

A

D

B A ̸⊥⊥ B | D
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d-connecting path

▶ A path between A and B: a sequence of distinct, adjacent vertices

A→ ◦ → ◦ ← · · · → B,

where every non-endpoint vertex is either a collider (→ ◦ ←) or a non-collider
(→ ◦ →, ← ◦ ←, ← ◦ →)

A path is d-connecting given C if

1 every non-collider /∈ C , and

2 every collider is ∈ C or is an ancestor of C .
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d-separation

Vertex A and vertex B are d-separated by vertex set C , written as A ⊥⊥ GB | C , if there
is no d-connecting path between A and B given C .

▶ Extended to A ⊥⊥ GB | C for disjoint vertex sets A,B,C .

C1 C2

A B
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Global Markov property

Global Markov property For disjoint vertex sets A,B,C , it holds that

A ⊥⊥ GB | C =⇒ A ⊥⊥ B | C [P], P ∈MG .

A

B

C

D E
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Quiz 1: Which CIs hold?

A

B

C

D E

Recall: A path between A and B: a sequence of distinct, adjacent vertices

A→ ◦ → ◦ ← · · · → B,

where every non-endpoint vertex is either a collider (→ ◦ ←) or a non-collider. A path is

d-connecting given C if

1 every non-collider /∈ C , and

2 every collider is ∈ C or is an ancestor of C .
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DAG as a CI model

▶ The global Markov property also holds reversely. If P satisfies

A ⊥⊥ GB | C =⇒ A ⊥⊥ B | C [P],

then P ∈MG .

Theorem Factorization ⇐⇒ Global Markov ⇐⇒ Local Markov.

▶ Local Markov: P ∈MG =⇒ A ⊥⊥ non-descendants of A | Pa(A)

☞ That is, the model defined asMG := {P : P factorizes according to G} can be
viewed as a CI model

{P : A ⊥⊥ GB | C =⇒ A ⊥⊥ B | C [P]},
i.e.,

{P : P satisfies CIs that are encoded as d-separations in G}.
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Sampling from a DAG

▶ We can simulate (sample) data by sequentially drawing from p(v | Pa(v)).

A

B

C

D E

Following the topological ordering A ≺ B ≺ C ≺ D ≺ E ,

1 Draw A ∼ P(A)

2 Draw B ∼ P(B | A), C ∼ P(C | A)
3 Draw D ∼ P(D | B,C )

4 Draw E ∼ P(E | D)
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DAG as a causal model

We have already seen that a DAG is a probability model as it defines a set of
probability distributionsMG satisfying the CIs.

▶ P ∈MG is an observed distribution over factual random variables.

☞ What makes it a causal model?

▶ It must be augmented with extra semantics that

1 posits the existence of counterfactuals (i.e., potential outcomes),

2 makes assumptions about factual (e.g., Y ) and counterfactual (e.g., Y (a))
variables, and

3 connects the counterfactual distributions with the observed distribution.
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Recall: Sampling from a DAG

A

B

C

D E

Following the topological ordering A ≺ B ≺ C ≺ D ≺ E ,

1 Draw A ∼ P(A)

2 Draw B ∼ P(B | A), C ∼ P(C | A)
3 Draw D ∼ P(D | B,C )

4 Draw E ∼ P(E | D)
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Alternative sampling (I): one-step-ahead counterfactuals

A a

B(a) b

C (a) c

D(b, c) d E (d)

▶ Single-World Intervention Graph (SWIG) (Richardson & Robins, 2013)

1 Draw A ∼ P(A)

2 For every potential a, draw B(a) ∼ P(B | A = a), C (a) ∼ P(A | A = a) independent of A

3 For every potential (b, c), draw D(b, c) ∼ P(D | B = b,C = c) independent of previously
drawn.

4 For every potential d , draw E (d) ∼ P(E | D = d) independent of previously drawn.
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Alternative sampling (I): one-step-ahead counterfactuals

A a

B(a) b

C (a) c

D(b, c) d E (d)

▶ Single-World Intervention Graph (SWIG) (Richardson & Robins, 2013)

• A: factual variable; naturally occurring value of A

• a: imagine that upon observing A, immediately we intervene on A and set its value to a

• B(a), C (a): the potential outcomes (counterfactual) under such an intervention

☞ From this SWIG, we can see that

A ⊥⊥ B(a),C (a) for every a.
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Alternative sampling (II): recursive substitution

A

B

C

D E A a

B(a) b

C (a) c

D(b, c) d E (d)

To generate the observed, factual variables,

1 A = A,

2 B = B(A), C = C (A),

3 D = D(B,C ),

4 E = E (D).

▶ Apparently, (A,B,C ,D,E ) ∼ P
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Alternative sampling (III): intervention

☞ Suppose that we intervene on B and set it to b′ — imposes input to B’s children.

A a

B(a) b

C (a) c

D(b, c) d E (d) A(b′)

B(b′)
b′

C (b′)

D(b′) E (b′)

1 A(b′) = A,

2 B(b′) = B(A(b′)) = B(A), C (b′) = C (A(b′)) = C (A)
▶ B(b′) is the naturally occurring value of B immediately before it is intervened on

3 D(b′) = D(b′,C (b′)),

4 E (b′) = E (D(b′)).

▶ This defines the distribution of P((A,B,C ,D,E )(b′)), or P(A,B,C ,D,E | do(B = b′)). 24 / 56
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Alternative sampling: the causal model

☞ This set of semantics defines the FFRCISTG / SWIG causal model associated
with a DAG G.

▶ ‘Finest Fully Randomized Causally Interpreted Structured Tree Graph’ (Robins, 1986)

☞ It makes weaker assumptions than Pearl’s NPSEM-IE (nonparametric structural
equation model with independent errors) causal model.
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Single treatment
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Single treatment, randomized

▶ A = 1: treated; A = 0: control.

A Y A a Y (a)

☞ From the SWIG, we can read off

A ⊥⊥ Y (a),

so
EY (a) = E[Y | A = a], a = 0, 1.

▶ association = causation
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Single treatment, conditionally randomized

A

L

Y A a

L

Y (a)
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Single treatment, conditionally randomized

A

L

Y A a

L

Y (a)

☞ L is an observed confounder between A and Y , so EY (a) ̸= E[Y | A = a].
▶ association ̸= causation

▶ There is no unobserved confounding. Recall that we can use L to identify EY (a)
through standardization or IPW (inverse probability weighting).
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Single treatment, conditionally randomized: Standardization

A

L

Y A a

L

Y (a)

▶ Standardization: From the SWIG, we see that

A ⊥⊥ Y (a) | L,
i.e., A is randomized within every stratum of L.

1 Within stratum L = l , we have E[Y (a) | L = l ] = E[Y | A = a, L = l ].

2 Averaging over l to get the whole population:

EY (a) =
∑
l

E[Y (a) | L = l ]P(L = l) =
∑
l

E[Y | A = a, L = l ]P(L = l).
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Single treatment, conditionally randomized: IPW

A

L

Y A a

L

Y (a) A

L

Y A a

L

Y (a)

p(L = l)p(A = a | L = l)p(Y | A = a, L = l)
p(L = l)p(A = a | L = l)p(Y | A = a, L = l) p(L = l)((((((((

p(A = a | L = l)p(Y | A = a, L = l)
×q(A = a)/((((((((

p(A = a | L = l)
▶ IPW: Weighting by

1/p(A | L) ▶ q(A = 0) = q(A = 1) = 1/2

or
p(A)/p(A | L) ▶ q(A) = p(A), stabilized weight

gives a trial where A is randomized (does not depend on L). ▶ association = causation
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Single treatment, conditionally randomized

A

L

Y A a

L

Y (a) A

L

Y A a

L

Y (a)

IPW:

E[Y (a)] = E
{

IA=a Y

P(A = a | L)

}
/E

{
IA=a

P(A = a | L)

}
= E

{
IA=a Y

P(A = a | L)

}
.

Stabilized IPW has the same target

E
{
IA=a�����P(A = a)Y

P(A = a | L)

}
/E

{
IA=a�����P(A = a)

P(A = a | L)

}
= E

{
IA=a Y

P(A = a | L)

}
.

☞ But it makes a difference when fitting marginal structural models with estimated weights...
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Single treatment, conditionally randomized: unified view

▶ Standardization and IPW target the same population quantity:

E
{

IA=a Y

P(A = a | L)

}
︸ ︷︷ ︸

IPW

= E
{
E[IA=a Y | L]
P(A = a | L)

}
= E

{
P(A = a | L)E[Y | A = a, L]

P(A = a | L)

}
= E{E[Y | A = a, L]}︸ ︷︷ ︸

standardization

☞ Again, it makes a difference when replaced by estimates...
☞ Both standardization and IPW are adjusting for L: We use L to block all the non-causal

paths (paths not in the shape A → · · · → Y ).

A

L

Y A a

L

Y (a)

☞ Non-causal (‘backdoor’) path A← L→ Y is blocked by L (i.e., not d-connected given L).
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Quiz 2

In the setting below, which strategies can correctly identify EY (a)?

A Y

L1 L2

L3
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Time-varying treatments
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Two treatments, randomized

1 Time 0: randomly assign A0 (1: treated; 0: control)

2 Time 1: randomly assign A1 (1: treated; 0: control) depending on A0.

3 Time 2: measure outcome Y

A0 A1 Y A0 a0 A1(a0) a1 Y (a0, a1)

☞ (A0,A1) as a whole is randomized (why?), so

EY (a0, a1) = E[Y | A0 = a0,A1 = a1].

▶ What is the meaning of EY (0, 0)? ▶ association = causation
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Two treatments: Example

Study of the effect of antiretroviral therapy on a health score (Robins & Hernan,
2008): 32,000 HIV infected subjects followed for one year.

1 Month 0: Assign therapy (A0 = 1: treated; A0 = 0: control) at the start of the
follow-up.

2 Month 6: Measure blood CD4 counts L1 and assign therapy (A1 = 1: treated;
A1 = 0: control).

3 Month 12: Measure the final health score Y .
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Quiz 3

1 Month 0: Assign therapy (A0 = 1: treated; A0 = 0: control) at the start of the
follow-up.
▶ Suppose A0 is randomly assigned.

2 Month 6: Measure blood CD4 counts L1 and assign therapy (A1 = 1: treated;
A1 = 0: control).
▶ Suppose A1’s assignment depends only on A0 but not L1.

3 Month 12: Measure the final health score Y .

A0 L1 A1 Y

U

☞ U represents unobserved health status that affects both L1 and Y . 38 / 56
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Quiz 3

1 Month 0: Assign therapy (A0 = 1: treated; A0 = 0: control) at the start of the
follow-up.
▶ Suppose A0 is randomly assigned.

2 Month 6: Measure blood CD4 counts L1 and assign therapy (A1 = 1: treated;
A1 = 0: control).
▶ Suppose A1’s assignment depends only on A0 but not L1.

3 Month 12: Measure the final health score Y .

A0 L1 A1 Y

U

☞ Non-causal path is not d-connected (unless conditioning on L1). 39 / 56



Causal DAGs
Single treatment

Time-varying treatments
Marginal structural model

Two treatments, with time-varying confounder

1 Month 0: Assign therapy (A0 = 1: treated; A0 = 0: control) at the start of the
follow-up.
▶ Suppose A0 is randomly assigned.

2 Month 6: Measure blood CD4 counts L1 and assign therapy (A1 = 1: treated;
A1 = 0: control).
▶ Suppose A1’s assignment depends on both A0 and L1.

3 Month 12: Measure the final health score Y .

A0 L1 A1 Y

U

☞ Can we identify EY (a0, a1)? 40 / 56
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Dilemma

1 Not adjusting for L1.

A0 L1 A1 Y

U

2 Adjusting for L1.

A0 L1 A1 Y

U

▶ Need something more sophisticated.
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IPW: Removing A1’s dependency on L1

A0 L1 A1 Y

U
▶ IPW

A0 L1 A1 Y

U

weight = 1/p(A1 | A0, L1)

A0 L1 A1 Y

U

stabilized weight = p(A1 | A0)/p(A1 | A0, L1)

☞ After reweighting, EY (a0, a1) = E[Y | A0 = a0,A1 = a1]. 42 / 56
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IPW: Identification

EY (a0, a1) = E
{

Y IA0=a0,A1=a1

P(A1 = a1 | A0 = a0, L1)

}
/E

{
IA0=a0,A1=a1

P(A1 = a1 | A0 = a0, L1)

}
.

☞ Does it make a difference to use the stabilized weight
P(A1 = a1 | A0 = a0)/P(A1 = a1 | A0 = a0, L1)?
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Quiz 4

Suppose A0, L1,A1 are all binary. What is the estimate of EY (0, 0) based on IPW?

n A0 L1 A1 E[Y | A0, L1,A1]

50 0 0 0 4
100 0 0 1 -1
100 0 1 0 2
50 0 1 1 -3
50 1 0 0 4
50 1 0 1 -2
100 1 1 0 7
200 1 1 1 11

☞ The first row means there are 50 subjects with A0 = 0, L1 = 0,A1 = 0 and their average
outcome is 4.
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Standardization / g-formula
▶ With a bit more algebra, the IPW formula can be rewritten as

EY (a0, a1) = E
{

Y IA0=a0,A1=a1

P(A1 = a1 | A0 = a0, L1)

}
/E

{
IA0=a0,A1=a1

P(A1 = a1 | A0 = a0, L1)

}
= E

{
Y IA0=a0,A1=a1

P(A0 = a0)P(A1 = a1 | A0 = a0, L1)

}
= E

{
E[Y IA0=a0,A1=a1 | L1]

P(A0 = a0)P(A1 = a1 | A0 = a0, L1)

}
= E

{
E[Y | A0 = a0,A1 = a1, L1]P(A1 = a1,A0 = a0 | L1)

P(A0 = a0)P(A1 = a1 | A0 = a0, L1)

}
= E

{
E[Y | A0 = a0,A1 = a1, L1]P(A0 = a0 | L1)

P(A0 = a0)

}
=

∑
l1

E[Y | A0 = a0,A1 = a1, L1 = l1]P(L1 = l1 | A0 = a0).
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Standardization / g-formula: Intuition

1 Consider Y (a1) := Y (A0, a1).

A0 L1 A1 Y

U

A0 L1 A1 a1 Y (a1)

U

Within the stratum of (A0, L1), A1 is independent of Y (a1), so (why?)

E[Y (a1) | A0 = a0, L1 = l1] = E[Y | A0 = a0,A1 = a1, L1 = l1].

2 Because A0 is randomly assigned,

E[Y (a0, a1)] = E[Y (a1) | A0 = a0] =
∑
l1

E[Y (a1) | A0 = a0, L1 = l1]P(L1 = l1 | A0 = a0).
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Positivity

From the standardization / g-formula

EY (a0, a1) =
∑
l

E[Y | A1 = a1,A0 = a0, L1 = l1]P(L1 = l1 | A0 = a0),

to identify EY (a0, a1), we must have

∀l1 : P(L1 = l1 | A0 = a0) > 0 =⇒ data within (a0, a1, l1),

i.e.,

∀l1 : P(L1 = l1 | A0 = a0) > 0 =⇒ P(A1 = a1 | A0 = a0, L1 = l1) > 0.
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Quiz 5

Suppose A0, L1,A1 are all binary. What is the estimate of EY (0, 0) based on standardization /
g-formula?

n A0 L1 A1 E[Y | A0, L1,A1]

50 0 0 0 4
100 0 0 1 -1
100 0 1 0 2
50 0 1 1 -3
50 1 0 0 4
50 1 0 1 -2
100 1 1 0 7
200 1 1 1 11

☞ The first row means there are 50 subjects with A0 = 0, L1 = 0,A1 = 0 and their average
outcome is 4.
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Quiz 6: Generalization

1 Month 0: Assign therapy (A0 = 1: treated; A0 = 0: control) at the start of the
follow-up.
▶ Suppose Y (a0, a1) ⊥⊥ A0 | L0 for baseline covariates L0.

2 Month 6: Measure blood CD4 counts L1 and assign therapy (A1 = 1: treated;
A1 = 0: control).
▶ Suppose Y (a0, a1) ⊥⊥ A1 | L0,A0, L1.

3 Month 12: Measure the final health score Y .

L0 A0 L1 A1 Y

U
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Generalization

L0 A0 L1 A1 Y

U

Under positivity and sequential randomization

Y (a0, a1) ⊥⊥ A0 | L0,
Y (a0, a1) ⊥⊥ A1 | L0,A0, L1,

EY (a0, a1) =
∑
l0

∑
l1

E[Y | A1 = a1,A0 = a0, L1 = l1, L0 = l0]

× P(L1 = l1 | A0 = a0, L0 = l0)P(L0 = l0).

▶ Extends to more time points.
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Out of luck

▶ If either red edge is present, then EY (a0, a1) cannot be identified.

L0 A0 L1 A1 Y

U
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Marginal structural (mean) model

Consider two treatments A0,A1.

▶ Marginal structural mean model is to postulate and fit

E[Y (a0, a1)] = f (a0, a1; θ).

For example, when A0,A1 are both binary:

• Saturated model

E[Y (a0, a1)] = α+ β0a0 + β1a1 + γa0a1

• Main effect only
E[Y (a0, a1)] = α+ β0a0 + β1a1
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Fitting model with IPW

If (A0,A1) is randomized, we have E[Y (a0, a1)] = E[Y | A0 = a0,A1 = a1], so the
model can be simply fitted with least squares.

Now under time-varying confounding, we can use IPW to reweigh data such that we
can treat the data as if it comes from a randomized experiment.

▶ To fit marginal structural mean model,

1 Estimate the propensity score P̂(a1 | a0, l1) (e.g., with logistic regression)

2 Compute weights ŵ = 1/P̂(A1 | A0, L1) or the stabilized weights

ŵs =

∑
l1

P̂(A1 | A0, l1)P̂(l1 | A0)

 /P̂(A1 | A0, l1).

3 Fit least squares using ŵ or ŵs as weights. ▶ It makes a difference here.
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Further reading

See Chapters 19, 20 and 21 of Hernán MA, Robins JM (2020). Causal Inference:
What If. Boca Raton: Chapman & Hall/CRC.
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