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Causality and association

• Causality is central to human knowledge.
• The major part of classic statistics is about association (e.g., Pearson correlation,
regression coefficient) rather than causation.

- Association/correlation describes the statistical relationship in the data, indicating
difference in one variable is associated with difference in another.

- Association / correlation does not imply causation.
- May be good for prediction but not enough for causation.

• Causation requires mechanistic understanding, indicating intervention in one
variable leads to change in another.
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Simpson’s paradox

• Consider a kidney stone example from Charig et al. (1986)

Success Failure
Open surgical procedure 273 77
Small puncture procedure 289 61

• The estimated risk difference is

R̂D =
273

273 + 77︸ ︷︷ ︸
open

− 289

289 + 61︸ ︷︷ ︸
small

= 78%− 83% = −5% < 0.

• Success rate is higher among the small puncture group (association)

• But is small puncture procedure better? (causation)
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Simpson’s paradox

• Patients were not randomized into the two procedures
• Patients receiving open surgical tend to have large stones, whereas patients

receiving small puncture tend to have small stones.
Patients with small stones Success Failure
Open surgical procedure 81 6
Small puncture procedure 234 36

Patients with large stones Success Failure
Open surgical procedure 192 71
Small puncture procedure 55 25

▶ Simpson’s paradox:

R̂DS =
81

8 + 6
− 234

234 + 46
= 6% > 0, R̂DL =

192

192 + 71
− 55

55 + 25
= 4% > 0, but R̂D = −5% < 0.

▶ Confounding: stone size affects both treatment assignment and success rate.
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Simpson’s paradox

1

1By Pace svwiki - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=62007681
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Potential outcomes

• Potential outcomes framework was developed by Neyman (1923) and Rubin
(1974); see Holland (1986) for more background and history.

• Consider two levels of treatment / exposure / intervention (e.g., 1 for treatment; 0
for control).

- Example: 1 for open surgical procedure; 0 for small puncture procedure

• Unit i has two potential outcomes (i.e., ‘counterfactuals’) Yi (1) and Yi (0)
- Yi (1) is the outcome (e.g., 1: success; 0: failure) that unit i would experience if
takes the treatment

- Yi (0) is the outcome (e.g., 1: success; 0: failure) that unit i would experience if
takes the control

- Unit i ’s individual treatment effect: Yi (1)− Yi (0)

• A clear definition of causal effect and actionable information:
☞ What can we conclude if we knew Yi (1)− Yi (0) = 1, 0 or -1?
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Yi(0),Yi(1): Implicit assumptions

1 No interference: Unit i ’s potential outcomes do not depend on other units’
treatments

- Can be violated in infectious diseases or network experiments.
- Example: if my friends receive flu shots, my chance of getting the flu decreases even
if I do not receive the flu shot.

- Causal inference with interference is an active research area (Hudgens & Halloran, 2008).

2 No multiple versions of treatment: Treatment levels are well-defined and each
level has only one ‘version’ of the treatment.

- Can be violated, e.g., Yi (1) (1: open surgical) depends on the surgeon who performs
the operation.

▶ These two assumptions together is called SUTVA (Stable Unit Treatment Value
Assumption) (Rubin, 1980).
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Fundamental problem of causal inference

• Under SUTVA, potential outcomes of all units in the study is called the ‘Science
Table’ (Rubin, 2005).

i Yi (0) Yi (1)

1 Y1(0) Y1(1)
2 Y2(0) Y2(1)
...

...
...

• Ai : treatment received by unit i ; Yi : unit i ’s outcome.

• Fundamental problem of causal inference:

Yi (0) and Yi (1) cannot be both observed for a unit i .
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Consistency: Yi = Yi (Ai ) = AiYi (1) + (1− Ai )Yi (0).

• Fundamental problem of causal inference:

Yi (0) and Yi (1) cannot be both observed for a unit i .
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Sample average treatment effect (finite population)

☞ Although we cannot observe both Yi (1) and Yi (0) for any individual i , we can
statistically infer the effect for a population on average.

Suppose the study consists of units i = 1, . . . , n.
▶ The SATE (Sample Average Treatment Effect) is

SATE :=
1

n

∑
i

Yi (1)−
1

n

∑
i

Yi (0) =
1

n

∑
i

(Yi (1)− Yi (0)).

☞ This is a fixed quantity pertaining to the n units in the study.

- 1
n

∑
i Yi (1): mean outcome had all units received treatment.

- 1
n

∑
i Yi (0): mean outcome had all units received control. ▶ intervention

- 1
n

∑
i (Yi (1)− Yi (0)): the average of individual treatment effects
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2

2Adapted from Fig 1.1 in Hernan and Robins.
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RCT: Randomization inference
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Randomized controlled trials (RCTs): gold standard of causal inference

Observed data
• There are n units in the experiment
• Binary treatment: Ai = 1 is the treatment (e.g., open surgical) and Ai = 0 the control

(e.g., small puncture)

• After treatment assignment, we measure an outcome variable Yi

Potential outcomes
• Yi (0),Yi (1), potential outcomes for i-th unit under control and treatment
• Yi = Yi (Ai ) (consistency)

i Yi (0) Yi (1) Ai Yi

1 ? 8 1 8
2 -6 ? 0 -6
...

...
...

...
...
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Estimate SATE from RCT

▶ Complete Randomization: Fix treatment group size n1. Choose n1 units uniformly
at random to receive treatment; the rest n0 = n − n1 units receive control.

▶ Also holds for simple randomization, Ai ∼ coin flip.

☞ Then, using consistency, (What is E[·] taken over?)

E [Ȳ1]︸︷︷︸
trt group mean

= E

[
1

n1

∑
i

AiYi

]
= E

[
1

n1

∑
i

AiYi (1)

]
=

1

n1

∑
i

E[Ai ]Yi (1) =
1

n

∑
i

Yi (1)

E [Ȳ0]︸︷︷︸
ctrl group mean

= E

[
1

n0

∑
i

(1− Ai )Yi

]
= E

[
1

n0

∑
i

(1− Ai )Yi (0)

]
=

1

n

∑
i

Yi (0).

☞ The difference-in-means
τ̂ := Ȳ1 − Ȳ0.

is unbiased for SATE = 1
n

∑
i (Yi (1)− Yi (0)). ▶ association = causation
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An RCT of fish oil diet (Knapp & FitzGerald, 1989)

• Researchers used 7 red and 7 black playing cards to randomly assign 14 volunteer males
with high blood pressure to one of two diets for four weeks: a fish oil diet (A = 1) and a
standard oil diet (A = 0).

• The reductions in diastolic blood pressure (DBP) after four weeks among the 14 men are
shown below.

i Yi (0) Yi (1) Ai Yi

1 ? 8 1 8
2 ? 12 1 12
3 ? 10 1 10
4 ? 14 1 14
5 ? 2 1 2
6 ? 0 1 0
7 ? 0 1 0

i Yi (0) Yi (1) Ai Yi

1 -6 ? 0 -6
2 0 ? 0 0
3 1 ? 0 1
4 2 ? 0 2
5 -3 ? 0 -3
6 -4 ? 0 -4
7 2 ? 0 2
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Result from RCT

• For those assigned to fish oil diet, average DBP reduction after four weeks is

Ȳ1 :=
1

7

∑
i

AiYi = 6.6

• For those assigned to standard oil diet, average DBP reduction after four weeks is

Ȳ0 :=
1

7

∑
i

(1− Ai )Yi = −1.1

• Our SATE estimate is Ȳ1 − Ȳ0 = 7.7 (95% CI: [2.7, 12.7]), indicating fish oil diet
for four weeks on average lead to an additional 7.7 reduction in DBP compared to
standard oil diet.
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Ȳ1 :=
1

7

∑
i

AiYi = 6.6

• For those assigned to standard oil diet, average DBP reduction after four weeks is
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τ̂ as an estimator of SATE

• Potential outcomes are fixed; randomness solely comes from treatment assignment.

• SATE: τ := 1
n

∑n
i=1 τi =

1
n

∑n
i=1[Yi (1)− Yi (0)]

• Notation: Ȳ (1) = 1
n

∑n
i=1 Yi (1), Ȳ (0) = 1

n

∑n
i=1 Yi (0),

S2(1) = 1
n−1

∑n
i=1{Yi (1)− Ȳ (1)}2 and S2(0) = 1

n−1

∑n
i=1{Yi (0)− Ȳ (0)}2, all four

quantities are unobserved.

Theorem

(a) τ̂ = Ȳ1 − Ȳ0 is unbiased for SATE = 1
n

∑n
i=1[Yi (1)− Yi (0)]

(b) τ̂ has variance V = Var(τ̂) = S2(1)
n1

+ S2(0)
n0

− S2(τ)
n , where S2(τ) = 1

n−1

∑n
i=1(τi − τ)2

measures the treatment effect heterogeneity.

(c) V̂ = S2
1/n1 + S2

0/n0 is a conservative variance estimator in the sense that

E (V̂ )− Var(τ̂) = S2(τ)/n ≥ 0, with equality holding if and only if τi = τ for all units,
where S2

1 = 1
n1−1

∑n
i=1 Ai (Yi − Ȳ1)

2 and S2
0 = 1

n0−1

∑n
i=1(1− Ai )(Yi − Ȳ0)

2.
19 / 48



Association
Causality and potential outcomes

RCT: Randomization inference
RCT: Super-population inference

Randomization inference: Lady tasting tea

• Fisher described the following famous experiment of lady tasting tea in his 1935
book The Design of Experiments.

• A lady claimed that she could tell the difference between the two ways of making
milk tea: one with milk added first, and the other with tea added first.

• As a statistician, Fisher designed an experiment to test whether the lady could
actually tell the difference between the two ways of making milk tea.

• He made 8 cups of tea, 4 with milk added first and the other 4 with tea added
first. Then he presented these 8 cups of tea in a random order to the lady and
asked the lady to pick up the 4 with milk added first.

20 / 48
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Quiz 1: Lady tasting tea

• Fisher described the following famous experiment of lady tasting tea in his 1935
book The Design of Experiments.

• A lady claimed that she could tell the difference between the two ways of making
milk tea: one with milk added first, and the other with tea added first.

• As a statistician, Fisher designed an experiment to test whether the lady could
actually tell the difference between the two ways of making milk tea.

• He made 8 cups of tea, 4 with milk added first and the other 4 with tea added
first. Then he presented these 8 cups of tea in a random order to the lady and
asked the lady to pick up the 4 with milk added first.

• Exercise: What are the units, treatment, and outcome in this experiment?
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Lady tasting tea

• Units: cup i = 1, . . . , 8
• Treatment Ai for the i-th cup (0: milk added first; 1: tea added first)
• Outcome Yi for the i-th cup (0: lady determines milk added first; 1: lady
determines tea added first)

• Potential outcomes Yi (0),Yi (1) for the i-th cup (What does Y3(0) = 1 represent?)

▶ For a = 0, 1 and y = 0, 1, let Nay be the number of cups with Ai = a and Yi = y .

Outcome Y
milk first (lady) tea first (lady) Total

Treatment A milk first N00 N01 4
tea first N10 N11 4

Total 4 4 8

(Why are the margins fixed?)
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milk first (lady) tea first (lady) Total

Treatment A milk first N00 N01 4
tea first N10 N11 4

Total 4 4 8

(Why are the margins fixed?)
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Lady tasting tea

▶ For a = 0, 1 and y = 0, 1, let Nay be the number of cups with Ai = a and Yi = y .

Outcome Y
milk first (lady) tea first (lady) Total

Treatment A milk first N00 4− N00 4
tea first 4− N00 N00 4

Total 4 4 8

▶ Fisher’s sharp null H0F posits that the lady cannot tell the difference of any cup:

Yi (0) = Yi (1), i = 1, . . . , 8.

For every cup, whether or not the milk was added first to the cup, the lady would say the same

thing: either Yi (0) = Yi (1) = 0 (milk added first) or Yi (0) = Yi (1) = 1 (tea added first).
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Lady tasting tea

▶ Fisher’s sharp null H0F : Yi (0) = Yi (1), i = 1, . . . , 8.

▶ In the real example, an extreme value of N00 = 4 was recorded.

‘Science Table’ under H0F

cup i 1 2 3 4 5 6 7 8

milk-first Yi (0) 0 0 0 0 1 1 1 1

tea-first Yi (1) 0 0 0 0 1 1 1 1

☞ Under H0F , that is to say among 4 cups of milk-first and 4 cups of tea-first, randomly draw
4 cups and all of them are milk-first. There is only

(
4
4

)
= 1 such occasion out of

(
8
4

)
= 70

possibilities, so the p-value is 1/70 = 0.014 < 0.05.
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Average treatment effect (super-population)

However, SATE is a quantity for the n units in the study; it may not generalize someone
outside the study.

▶ Super-population: Imagine the units in the study are drawn randomly from a larger,
super-population. That is, ☞ Science table is now random.

(Yi (0),Yi (1))
n
i=1 are iid copies of (Y (1),Y (0)).

It makes sense to infer the ATE (Average Treatment Effect) with respect to this population

ATE := EY (1)− EY (0) = EYi (1)− EYi (0).

▶ Identification in RCT: E[Yi | Ai = 1] = E[Yi (1) | Ai = 1] = E[Yi (1)] by Ai ⊥⊥ Yi (0),Yi (1).

ATE = E[Yi | Ai = 1]− E[Yi | Ai = 0].

☞ association = causation.
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ATE estimation

• There are many estimators for

ATE = E[Yi | Ai = 1]− E[Yi | Ai = 0].

• The simplest is still the difference-in-means

τ̂ = Ȳ1 − Ȳ0,

which is also the ANOVA with respect to a binary variable A.

• Can we estimate ATE more accurately (i.e., efficiently) and in a robust way?
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Yes, covariate adjustment!

In RCT, baseline covariates (i.e., those that are measured before randomization of
treatment) can be used as precision variables (i.e., variables that are related to the
outcome but not the treatment) to gain efficiency.

We can adjust for them to improve efficiency in a robust way.

There are three approaches:

1 Regression adjustment

2 Post-stratification

3 Inverse probability weighting (IPW)
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Regression adjustment: ANCOVA

• Historically, Fisher (1925) proposed to adjust for baseline covariates Xi using the
analysis of covariance (ANCOVA) to improve efficiency. This remains a standard
strategy in many fields.

• He suggested running a linear regression of Yi on (1,Ai ,Xi ). If we trust the linear
model, the coefficient of Ai is an estimator the treatment effect.

• Later, it was discovered by many statisticians3 that in RCT, the ANCOVA
estimator correctly estimates ATE even linear model is wrong!

- Regression adjustment does not change the estimand
- For example, if Yi and Xi do not have a linear relationship, or even if Yi is binary,
the ANCOVA procedure is still correct in RCT.

- Without randomization, this magic disappears.

3Cassel et al., 1976; Lin, 2013; Tsiatis et al., 2008; Yang and Tsiatis, 2001 among others
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Why does it work?

☞ If we fit OLS
Yi = µ+ θAi + βXi + εi ,

the coefficient of Ai is

θ̂ = Ȳ1 − Ȳ0︸ ︷︷ ︸
difference in means

− β̂ (X̄1 − X̄0)︸ ︷︷ ︸
A⊥⊥X

,

so, morally speaking, the second term is asymptotically mean zero.
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Example: Iron intake on academic achievement

• Chong et al. (2016) conducted an RCT to evaluate the impact of iron intake on
academic achievement.

• They recruited students of age 11 to 19 in a rural area of Cajamarca, Peru, where
many adolescents suffer from iron deficiency.

• n = 219 students were assigned to one of the following three promotional videos:
- Video 1: A soccer player is encouraging iron supplements to maximize energy;
- Video 2: A physician is encouraging iron supplements for overall health;
- Video 3: A dentist encouraging oral hygiene without mentioning iron at all (placebo)

• Goal: whether showing different promotional videos to the students can improve
their academic performance through increased iron intake.

• Primary outcome: academic achievement, measured by a standardized average of
the student’s grades in math, foreign language, social sciences, science, and
communications in a semester.

• Baseline covariate: baseline anemia status (1/0), grade (5 levels)
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Example: Iron intake on academic achievement

Table: Estimate, standard error (SE), and p-value (reproduced from Ye et al., 2023)

Physician versus placebo Soccer star versus placebo

Method X Estimate SE p-value Estimate SE p-value

ANOVA 0.386 0.211 0.067 -0.068 0.205 0.739

ANCOVA Grade, Anemia status 0.437 0.199 0.028 -0.085 0.201 0.672

• Point estimates are similar, suggesting that they both estimate ATE

• Including baseline grade and anemia status in the working model are useful to reduce the
standard error

• Compared to the control group, the promotional video by the soccer player does not seem
to have a positive effect on the academic achievement. In contrast, the video of the
physician promoting iron supplements appears to have a positive effect.
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Regression adjustment: ANHECOVA

• With reasonably large sample size, it is even better to include treatment-by-covariate
interactions (with centered covariates).

• Specifically, we fit a linear model

Yi = µ+ θAi + β(Xi − X̄ ) + δAi (Xi − X̄ ) + εi ,

where X̄ is the average of Xi for all participants. We call this Analysis of Heterogeneous
covariance (ANHECOVA) (Ye et al., 2023).

• The coefficient of Ai is

Ȳ1 − Ȳ0 − (β̂ + δ̂)(X̄1 − X̄ ) + β̂(X̄0 − X̄ )

• The ANHECOVA estimator is always no less efficient than ANOVA even when the
linear model is wrong.

• The R package RobinCar can calculate robust variance estimators.
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Example: Iron intake on academic achievement

Table: Estimate, standard error (SE), and p-value (reproduced from Ye et al., 2023)

Physician versus placebo Soccer star versus placebo

Method X Estimate SE p-value Estimate SE p-value

ANOVA 0.386 0.211 0.067 -0.068 0.205 0.739

ANCOVA Grade, Anemia status 0.437 0.199 0.028 -0.085 0.201 0.672
ANHECOVA Grade, Anemia status 0.481 0.193 0.013 -0.046 0.195 0.815

• Point estimates are similar, suggesting that they all estimate the ATE

• Including baseline grade and anemia status in the working model are useful to
reduce the standard error

• ANHECOVA has smaller SE than ANCOVA and ANOVA
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Regression adjustment: beyond linear regression

• In general, we can use other non-linear models to estimate ATE, using a method
called g-computation (i.e., standardization)

- e.g., logistic regression for binary outcomes, Poisson regression for count outcomes
• Take logistic regression as an example, we may fit a logistic model

P(Y = 1 | A,X ) =
eµ+θA+βX

1 + eµ+θA+βX
,

then we can estimate ATE using

ÂTEg =
1

n

n∑
i=1

eµ̂+θ̂+β̂Xi

1 + eµ̂+θ̂+β̂Xi

− 1

n

n∑
i=1

eµ̂+β̂Xi

1 + eµ̂+β̂Xi

.

• G-computation can robustly estimate ATE with linear/logistic/Poisson regression
(Freedman, 2008; Guo & Basse, 2021).
☞ For other models (e.g., negative binomial), it may be biased when model is wrong but this can be fixed.
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Why does it work?

The difference-in-means
ÂTE = Ȳ1 − Ȳ0

is always unbiased. By the property of logistic regression, it holds that

ÂTE = Ȳ1 − Ȳ0 =
1

n1

∑
i :Ai=1

eµ̂+θ̂+β̂Xi

1 + eµ̂+θ̂+β̂Xi

− 1

n0

∑
i :Ai=0

eµ̂+β̂Xi

1 + eµ̂+β̂Xi

.

So the difference between the two is

ÂTEg − ÂTE =

(
1

n

∑
i

eµ̂+θ̂+β̂Xi

1 + eµ̂+θ̂+β̂Xi

− 1

n1

∑
i :Ai=1

eµ̂+θ̂+β̂Xi

1 + eµ̂+θ̂+β̂Xi

)

−

(
1

n

∑
i

eµ̂+β̂Xi

1 + eµ̂+β̂Xi

− 1

n0

∑
i :Ai=0

eµ̂+β̂Xi

1 + eµ̂+β̂Xi

)
,

which is asymptotically mean zero because A ⊥⊥ X . ▶ More on this on Day 2, Lecture 3.
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Post-stratification

• Discrete baseline covariates can be adjusted by post-stratification (Fuller, 2011;
Miratrix et al., 2013)

• Suppose we can create K strata, we calculate outcome mean difference separately
within each stratum, then do an weighted average:

1

n

K∑
k=1

nk
n
(Ȳ1k − Ȳ0k)

where nk is the size of stratum k , and Ȳ1k , Ȳ0k are the mean outcomes under
treatment and control, respectively, in stratum k.

• In the iron intake example, we can create 5× 2 = 10 strata based on baseline
grade (5 levels) and anemic indicator (2 levels), and use the post-stratification
method.
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Inverse probability weighting (IPW)

• Propensity score were introduced in Rosenbaum and Rubin (1983) as a tool to
estimate the causal effect in observational studies.

• Propensity score is the probability of receiving treatment conditional on covariates
P(A = 1 | X ).

• Although in RCT, the true propensity score is known by design, e.g.,
P(A = 1 | X ) = 0.5. Nevertheless, we can still fit a model (e.g. logistic
regression) of A on X .

• Intuition: in RCT, there may be chance imbalance in covariates, which is modeled
using propensity score. Weighting by the propensity score leads to increased
balance of these covariate and thus less variability and increased precision of the
ATE estimate (Williamson et al., 2014).
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Relationships among regression adjustment, post-stratification, and IPW
in RCT

• Regression adjustment is a general-purpose and robust approach to improve
efficiency in estimating ATE. Efficiency gains increase with model quality, but all
models are valid.

• Post-stratification is the same as adjusting for the strata indicators using
ANHECOVA regression adjustment.

• IPW (fit logistic regression for A ∼ X ) is asymptotically equivalent to adjusting
for X using ANHECOVA regression adjustment (Shen et al., 2014). However,
IPW may be unstable in small sample size if weights are close to 0 or 1.
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In practice

• Choice of covariates: choosing key baseline covariates that can predict the
outcome. For valid statistical inference, covariates should be pre-specified.

DO NOT adjust for post-randomization covariates!

• The previous discussion focuses on simple randomization (coin flipping). All
results we discussed still hold for a slightly different scheme called complete
randomization (e.g., randomly assign 50 out of 100 to treatment).

• There are more complicated assignment mechanisms to balance covariates
between the treatment and controls, e.g., covariate-adaptive randomization (Ye
et al., 2023). Covariate adjustment methods have been extended to theses
assignment mechanisms.
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Practical 1

42 / 48



References

References I

Cassel, C. M., Särndal, C. E., & Wretman, J. H. (1976). Some results on generalized
difference estimation and generalized regression estimation for finite
populations. Biometrika, 63(3), 615–620.
https://doi.org/10.1093/biomet/63.3.615

Charig, C. R., Webb, D. R., Payne, S. R., & Wickham, J. E. (1986). Comparison of
treatment of renal calculi by open surgery, percutaneous nephrolithotomy, and
extracorporeal shockwave lithotripsy.. Br Med J (Clin Res Ed), 292(6524),
879–882.

Chong, A., Cohen, I., Field, E., Nakasone, E., & Torero, M. (2016). Iron deficiency and
schooling attainment in peru. American Economic Journal: Applied Economics,
8(4), 222–55. https://doi.org/10.1257/app.20140494

43 / 48

https://doi.org/10.1093/biomet/63.3.615
https://doi.org/10.1257/app.20140494


References

References II

Fisher, R. A. (1925). Statistical methods for research workers. Edinburgh by Oliver;
Boyd, 1st edition.

Freedman, D. A. (2008). Randomization does not justify logistic regression. Statistical
Science, 23(2), 237–249. https://doi.org/10.1214/08-STS262

Fuller, W. A. (2011). Sampling statistics. John Wiley & Sons.

Guo, K., & Basse, G. (2021). The generalized oaxaca-blinder estimator. Journal of the
American Statistical Association, 116, 1–13.
https://doi.org/10.1080/01621459.2021.1941053
doi: 10.1080/01621459.2021.1941053.

Holland, P. W. (1986). Statistics and causal inference. Journal of the American
statistical Association, 81(396), 945–960.

44 / 48

https://doi.org/10.1214/08-STS262
https://doi.org/10.1080/01621459.2021.1941053


References

References III

Hudgens, M. G., & Halloran, M. E. (2008). Toward causal inference with interference.
Journal of the American Statistical Association, 103(482), 832–842.

Knapp, H. R., & FitzGerald, G. A. (1989). The antihypertensive effects of fish oil. New
England Journal of Medicine, 320(16), 1037–1043.

Lin, W. (2013). Agnostic notes on regression adjustments to experimental data:
Reexamining freedman’s critique. Annals of Applied Statistics, 7(1), 295–318.
https://doi.org/10.1214/12-AOAS583

Miratrix, L. W., Sekhon, J. S., & Yu, B. (2013). Adjusting treatment effect estimates
by post-stratification in randomized experiments. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 75(2), 369–396.

45 / 48

https://doi.org/10.1214/12-AOAS583


References

References IV

Neyman, J. (1923). On the application of probability theory to agricultural
experiments. essay on principles. section 9.. Statistical Science, 5(4), 465–472.
Trans. Dorota M. Dabrowska and Terence P. Speed (1990).

Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in
observational studies for causal effects. Biometrika, 70(1), 41–55.

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and
nonrandomized studies. Journal of Educational Psychology, 6(5), 688–701.

Rubin, D. B. (1980). Comment on “Randomization analysis of experimental data: The
Fisher randomization test” by D. Basu. Journal of the American statistical
association, 75(371), 591–593.

Rubin, D. B. (2005). Causal inference using potential outcomes: Design, modeling,
decisions. Journal of the American Statistical Association, 100(469), 322–331.

46 / 48



References

References V

Shen, C., Li, X., & Li, L. (2014). Inverse probability weighting for covariate adjustment
in randomized studies. Statistics in medicine, 33(4), 555–568.

Tsiatis, A. A., Davidian, M., Zhang, M., & Lu, X. (2008). Covariate adjustment for
two-sample treatment comparisons in randomized clinical trials: A principled
yet flexible approach. Statistics in Medicine, 27(23), 4658–4677.
https://doi.org/https://doi.org/10.1002/sim.3113
https://doi.org/10.1002/sim.3113.

Williamson, E. J., Forbes, A., & White, I. R. (2014). Variance reduction in randomised
trials by inverse probability weighting using the propensity score. Statistics in
medicine, 33(5), 721–737.

47 / 48

https://doi.org/https://doi.org/10.1002/sim.3113


References

References VI

Yang, L., & Tsiatis, A. A. (2001). Efficiency study of estimators for a treatment effect
in a pretest–posttest trial. The American Statistician, 55(4), 314–321.
https://doi.org/10.1198/000313001753272466
doi: 10.1198/000313001753272466.

Ye, T., Shao, J., Yi, Y., & Zhao, Q. (2023). Toward better practice of covariate
adjustment in analyzing randomized clinical trials. Journal of the American
Statistical Association, 117(544), 2370–2382.

48 / 48

https://doi.org/10.1198/000313001753272466

	Association
	Causality and potential outcomes
	RCT: Randomization inference
	RCT: Super-population inference
	Appendix
	References


